Conformations of Saturated Six-Membered Ring Phosphorus Heterocycles. 2-Aryl-1,3,2 λ^{5}-oxazaphosphorinanes

Wesley G. Bentrude, ${ }^{*, \dagger}$ William N. Setzer, ${ }^{\dagger}$ Alan E. Sopchik, ${ }^{\dagger}$ Subramanian Chandrasekaran, ${ }^{\dagger}$ and Michael T. Ashby ${ }^{\ddagger}$
Contribution from the Departments of Chemistry, University of Utah, Salt Lake City, Utah 84112, and University of Arizona, Tucson, Arizona 85721. Received November 30, 1987

Abstract

A series of 2-aryl-2-oxo- and 2-thioxo-5-tert-butyl-1,3,2 λ^{5}-oxazaphosphorinanes has been prepared (6-12). Assignments of cis or trans geometries to individual diastereomers were made by ${ }^{31} \mathrm{P}$ and ${ }^{1} \mathrm{H}$ NMR criteria combined with X-ray crystallographic structures for cis-8 and trans-12. ${ }^{1} \mathrm{H}$ NMR analysis at 300 MHz of chair \rightleftharpoons twist equilibria leads to the conclusion, based mostly on the 2-oxo derivatives, that cis chair conformations (13) with 5 -terl-butyl equatorial and Ar substituent on phosphorus axial are strongly destabilized by N3Ph/PAr steric interactions. Thus, one finds an increasingly more favorable estimate of ΔG° (chair \rightarrow twist) for the 2-oxo series cis-6, cis-8, cis-11, and cis-12 (N3H/PPh, N3H/PMes, N3Ph/PPh, N3Ph/PMes). Substitution of H on N 3 by Ph (cis-11) changes the ΔG° (chair \rightarrow twist) value for the PPh compound (cis-6) by $0.9 \mathrm{kcal} / \mathrm{mol}$ in favor of the twist form. The same substitution for the Mes case (cis-8) results in an even greater change ($\geq 2.2 \mathrm{kcal} / \mathrm{mol}$) in ΔG° (chair \rightarrow twist) with cis-12 in fact essentially completely in twist conformation 15. Methyl substitution at N3, cis-9, likewise increases the population of twist conformation, clearly an effect of destabilizing $\mathrm{N} 3 \mathrm{Me} / \mathrm{PPh}$ interactions in the chair, which are relieved in the twist conformation. These results point to the major role of N3R/PZ steric repulsive effects in the equilibria of $1,3,2 \lambda^{5}$-oxazaphosphorinanes. Excluded is the possibility that Ph substitution at N3 merely reduces the importance of n / σ^{*} anomeric effects involving the $N 3$ lone pair and axial substituent Z ($A r, M e_{2} N$) on phosphorus. The trans diastereomers also readily depopulate the chair conformation to give twist form 16, however, instead of 15 (trans-6,8, and 11). The pseudoaxial-seeking tendencies of substituents on phosphorus for trans diastereomers are shown to be $\mathrm{CH}_{3} \mathrm{O}$ $>\mathrm{Ph}>\mathrm{Me}_{2} \mathrm{~N}$. A notable finding for the trans-2-aryl-2-oxo-5-tert-butyl-1,3,2 λ^{5}-oxazaphosphorinanes is the destabilizing effect of equatorial PMes compared to equatorial PPh, which results in greater depopulation of the diequatorially substituted chair, 13.

The $1,3,2 \lambda^{5}$-oxazaphosphorinane ring system, structures $1-5$, is formally derived from cyclohexane by the replacement of three ring carbons by heteroatoms. In so doing, (1) ring hydrogen

1

2. $R=H$

4. $R=H$
5. $R=P h$
atoms are replaced by lone pairs, (2) bond lengths and angles are altered, and (3) bond and molecular dipoles are introduced. The resulting ring system provides an opportunity to study the effects of heteroatoms within the ring on the conformational properties of cyclohexane. Cyclophosphamide (1), an important antitumor agent, contains the $1,3,2 \lambda^{5}$-oxazaphosphorinane as an essential element in its biological activity, as do its congeners trophospha mide and isophosphamide. ${ }^{1}$ These molecules are activated by a first-step microsomal oxidation in the liver to give $4-\mathrm{OH}$ products, which potentially are diastereomeric. Moreover, in animal tests, the diastereomeric cis- and trans-4-phenylcyclophosphamides show different efficacies. ${ }^{2}$ An understanding of the potential effects of conformation on oxidation, the transport properties of metabolites, and breakdown of metabolites to cytotoxic products depends on a thorough knowledge of the conformational properties of the $1,3,2 \lambda^{5}$-oxazaphosphorinane ring system.

We have reported earlier for a number of 2-oxo- and 2-thi-oxo-2-(dialkylamino)- $1,3,2 \lambda^{5}$-oxazaphosphorinanes the major effects on chair-chair and chair-twist conformational equilibria resulting from substituent changes at N3 and on phosphorus. In particular, from comparison of 4 and 5 , the $\sim 1.6 \mathrm{kcal} / \mathrm{mol}$ destabilization of 13 in favor of $\mathbf{1 5}$ on replacement of H at N 3 by $\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{X}=\mathrm{Me}_{2} \mathrm{~N}, \mathrm{Y}=\mathrm{O}\right)$ is notable. ${ }^{3}$ A similar effect was found on the chair \rightleftharpoons chair equilibrium for the 5,5 -dimethyl-2-(di-alkylamino)-2-oxo-3-R-1,3,2 λ^{5}-oxazaphosphorinanes (2 and 3). ${ }^{4}$

[^0]The depopulation of chair conformations such as 13 with axial $\mathrm{Me}_{2} \mathrm{~N}$ was ascribed primarily to steric repulsions between the $\mathrm{C}_{6} \mathrm{H}_{5}$ at N 3 and the axial $\mathrm{Me}_{2} \mathrm{~N}$. However, the phenyl substituent at N 3 is also inductively withdrawing and may significantly reduce the stabilization resulting from n / σ^{*} overlap involving the lone pair on N 3 and the $\mathrm{P}-\mathrm{N} \sigma^{*}$ orbital when the $\mathrm{Me}_{2} \mathrm{~N}$ is axial. It might indeed be argued that the observed effects of replacement of H by Ph at N 3 is primarily a stereoelectronic phenomenon rather than a steric one.
To address this question, we have compared phenyl on phosphorus to the sterically more demanding mesityl substituent (hydrogen, methyl, and phenyl substituents on ring nitrogen) in a series of 5 -tert-butyl-2-oxo- and 2 -thioxo-1,3,2 λ^{5}-oxazaphosphorinanes, 6-12. The effects of substituent changes on the

$$
\begin{aligned}
& \text { +N } \\
& \text { 6: } x=0, R=H . A_{r}=P h \\
& 7: x=S, R=H, A_{r}=P h \\
& \text { 8: } X=0, R=H, A r=\text { Mes } \\
& \text { 9: } X=0, R=M e, A r=P h \\
& \text { 10: } X=S, R=M e . A r=P h \\
& \text { 11: } X=O, R=P h . A r=P h \\
& \text { 12: } X=0, R=P h, A r=\text { Mes }
\end{aligned}
$$

equilibria involving 13-16 that we report can only be understood

[^1]Table I. Proton and Phosphorus Chemical Shifts for 6-12 ${ }^{a}$

compd	solvent	$\delta(\mathrm{A})$	δ (B)	$\delta(\mathrm{C})$	δ (D)	$\delta(\mathrm{X})$	$\delta(t-\mathrm{Bu})$	$\delta(\mathrm{R})^{b}$	$\delta(\mathrm{Ar})$	$\delta\left({ }^{31} \mathrm{P}\right)^{c}$
cis-6	$\mathrm{C}_{6} \mathrm{D}_{6}$	3.67	4.17	2.70	3.14	1.76	0.42	6.24	7.19,8.06	19.47
cis-7	$\mathrm{C}_{6} \mathrm{D}_{6}$	3.71	4.29	2.69	3.09	1.78	0.51	4.05	$7.26,7.97$	73.08
cis-8	$\mathrm{C}_{6} \mathrm{D}_{6}$	3.62	4.19	2.65	2.96	1.76	0.42	5.38	6.75, 6.73	20.88
cis-9	$\mathrm{C}_{6} \mathrm{D}_{6}$	3.76	4.13	2.89	2.74	1.91	0.54	2.53	7.19, 7.87	17.33
cis-9	tol- $d_{8}, 101{ }^{\circ} \mathrm{C}$	3.86	4.21	3.02	2.84	1.99	0.66	2.56	7.23, 7.85	
cis-10	$\mathrm{C}_{6} \mathrm{D}_{6}{ }^{\text {d }}$	4.10	4.55	3.13	3.12	2.03	0.59	2.52	7.15, 7.96	82.70
cis-10	tol- $d_{8}, 101{ }^{\circ} \mathrm{C}^{d}$	3.84	4.28	2.94	2.88	1.81	0.69	2.54	7.19, 7.96	
cis-11	$\mathrm{C}_{6} \mathrm{D}_{6}{ }^{\text {d }}$	3.82	4.35	3.36	3.39	2.06	0.53	6.86, 7.03	7.55, 7.89	13.33
cis-12	$\mathrm{C}_{6} \mathrm{D}_{6}$	3.81	4.48	3.42	3.49	2.72	0.57	6.5	7.27	14.78
cis-12	acetone- d_{6}	4.20	4.55	3.66	3.70	2.64	1.00	6.80	7.23	
trans-6	$\mathrm{C}_{6} \mathrm{D}_{6}$	4.22	3.94	3.09	3.00	1.63	0.54	5.82	7.18, 8.10	18.96
trans-7	$\mathrm{C}_{6} \mathrm{D}_{6}$	4.39	3.88	2.97	2.67	1.57	0.54	2.11	7.16, 8.04	80.39
trans-8	$\mathrm{C}_{6} \mathrm{D}_{6}$	4.26	3.92	3.05	2.94	1.51	0.53	5.92	$6.75,6.73$	20.68
trans-10	$\mathrm{C}_{6} \mathrm{D}_{6}$	4.54	4.06	3.06	2.76	1.98	0.66	2.08	7.18, 8.25	88.75
trans-11	$\mathrm{C}_{6} \mathrm{D}_{6}$	4.37	3.99	3.38		1.93	0.56	6.88, 7.06	7.48, 7.96	15.12
trans-11	acetone- $d_{6}{ }^{\text {d }}$	4.48	4.38	3.63	3.76	2.38	0.99	$7.06,7.24,7.37,7.48,7.78$		
trans-12	$\mathrm{C}_{6} \mathrm{D}_{6}$	4.65	4.18	3.82	3.38	2.23	0.62	6.61-7.38		19.69
trans-12	acetone- d_{6}	4.55	4.42	3.79	3.60	2.42	1.01	6.82-7.28		

${ }^{a}$ Concentration $\sim 10 \% \mathrm{w} / \mathrm{v}$. See structure 13 for proton assignments. Measured at 300 MHz . ${ }^{b}$ Substituent at N 3 . ${ }^{c}$ In $\mathrm{C}_{6} \mathrm{D}_{6}$. ${ }^{d}$ Simulated and iterated using LAOCN3.
in terms of steric repulsions between R at N3 and axial or pseudoaxial aryl (phenyl or mesityl). An unexpected apparent

destabilization of the chain conformation $\mathbf{1 3}$ with H at N3 and mesityl equatorial on phosphorus also is encountered. Indeed, trans diastereomers $(Y=$ aryl $)$ are seen to readily depopulate conformation 13 in a number of instances.

Results

Preparations. Compounds $\mathbf{6}^{-11}$ were prepared by reaction of the appropriate amino alcohol with the corresponding phosphoryl dichloride:

Reaction of bis(dimethylamino) mesitylphosphine (18) with 17 $(\mathrm{R}=\mathrm{Ph})$, followed by oxidation by $\mathrm{N}_{2} \mathrm{O}_{4}$, gave 12. Amino alcohol 17 was readily prepared by LiAlH_{4} reduction of the corresponding amide ester, obtained routinely from diethyl tert-butylmalonate. ${ }^{3}$

Assignments of Diastereomers. The designation cis or trans (relationship of t-Bu and substituent on phosphorus) to the individual diastereomers of 8 and 12 was made by single-crystal X-ray structure determinations for cis-8 (see Figure 1 and Dicussion below) and trans- 12 (Figure 2). ${ }^{5}$ The cis and trans geometries for the diastereomers of 6,7 , and $9-11$ were derived from the relative chemical shifts of H_{A} vs $\mathrm{H}_{\mathrm{B}}\left(\delta\left(\mathrm{H}_{A}\right)>\delta\left(\mathrm{H}_{\mathrm{B}}\right)\right.$ (trans); $\delta\left(\mathrm{H}_{\mathrm{B}}\right)>\delta\left(\mathrm{H}_{\mathrm{A}}\right)$ (cis)) and for 7,10, and 11 also from the values of $\delta^{31} \mathrm{P}\left(\delta\left({ }^{31} \mathrm{P}\right)\right.$ (trans) $>\delta\left({ }^{31} \mathrm{P}\right)($ cis $\left.)\right)$, Table I. The ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ chemical shift criteria have been validated by X-ray

[^2]

Figure 1. ORTEP plot for cis-8.

Figure 2. ORTEP plot for trans-12. ${ }^{5}$
crystallography of six 5-tert-butyl-2-oxo- or 2-thioxo-1,3,2 λ^{5} oxazaphosphorinanes including 8 and $12 .{ }^{6}$ Note that the dia-

[^3]Table II. Proton Coupling Constants (Hz) for $6 \mathbf{- 1 2}$ at $300 \mathrm{MHz}^{\mathrm{a}}$

compd	solvent	$T,{ }^{\circ} \mathrm{C}$	X	Y	R	$J_{\text {AB }}$	$J_{\text {AX }}$	$J_{\text {BX }}$	$J_{\text {AP }}$	$J_{\text {BP }}$	$J_{\text {CD }}$	$J_{\text {CX }}$	$J_{\text {DX }}$	$J_{\text {CP }}$	$J_{\text {DP }}$	$J_{\text {BD }}$	other ${ }^{\text {b,e }}$
cis-6	$\mathrm{C}_{6} \mathrm{D}_{6}$	25	Ph	0	H	-11.4	10.0	4.6	6.8	18.2	-12.7	11.1	4.9	2.3	24.6	2.0	$J_{\text {CY }}=3.7, J_{\mathrm{DY}}=6.9, J_{\mathrm{YP}}=6.6$
cis-7	$\mathrm{C}_{6} \mathrm{D}_{6}$	25	Ph	S	H	-11.4	10.0	4.6	7.6	20.0	-13.5	11.5	4.7	2.0	25.6	2.0	$J_{\text {CY }}=6.8, J_{\text {DY }}=7.1, J_{Y P}=6.8$
cis-8	$\mathrm{C}_{6} \mathrm{D}_{6}$	25	Mes	0	H	-11.2	9.1	4.8	9.1	16.9	-12.8	11.2	5.2	2.5	24.5	1.8	$J_{\text {CY }}=4.2, J_{\text {DY }}=7.2$
cis-9	$\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}$	25	Ph	0	Me	-11.2	9.6	4.9	8.2	16.8	-12.1	11.0	5.7	5.2	15.6	1.4	$J_{\text {MeP }}=9.6$
cis-9	$\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}$	101	Ph	0	Me	-11.2	9.0	5.3	10.0	14.8	-12.4	10.8	5.6	5.6	15.4	1.2	$J_{\text {MeP }}=9.5$
cis-10 ${ }^{\text {c }}$	$\mathrm{C}_{6} \mathrm{D}_{6}$	25	Ph	S	Me	-11.3	7.7	5.1	12.9	16.1	-13.0	9.0	5.6	11.0	14.9	0.0	$J_{\text {MeP }}=13.2, J_{\text {XP }}=-1.1^{d}$
cis-10 ${ }^{\text {c }}$	$\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}$	101	Ph	S	Me	-11.3	7.4	5.6	14.5	14.6	-12.6	9.0	5.6	10.4	15.0	0.7	$J_{\text {MeP }}=13.0, J_{\mathrm{XP}}=-1.1$
cis-11 ${ }^{\text {c }}$	$\mathrm{C}_{6} \mathrm{D}_{6}$	25	Ph	0	Ph	-11.2	8.3	6.5	15.4	10.7	-12.1	11.2	4.9	1.9	16.6	0.8	$J_{\text {XP }}=-0.7$
cis-12	$\mathrm{C}_{6} \mathrm{D}_{6}$	25	Mes	0	Ph	-10.4	11.4	6.9	18.4	3.3	$-11.4{ }^{\text {e }}$	11.4	3.7	1.5	11.4	1.0	
cis-12 ${ }^{\text {c }}$	acetone- d_{6}	25	Mes	O	Ph	-10.5	11.3	6.6	17.6	4.0	-11.8	11.5	3.3	1.0	12.9	1.1	$J_{\mathrm{XP}}=-0.7$
trans-6	$\mathrm{C}_{6} \mathrm{D}_{6}$	25	O	Ph	H	-10.8	10.8	4.1	5.7	19.4	-11.9	9.6	6.7	14.0	12.7	1.1	$J_{\mathrm{CY}}=4.3, J_{\mathrm{DY}}=2.8, J_{\mathrm{YP}}=6.4$
trans-7	$\mathrm{C}_{6} \mathrm{D}_{6}$	25	S	Ph	H	-11.2	11.2	4.7	7.2	22.4	-12.4	9.0	5.2	12.4	18.3	1.5	$J_{\text {CY }}=3.6, J_{\mathrm{DY}}=5.8, J_{\mathrm{YP}}=9.0$
trans-8	$\mathrm{C}_{6} \mathrm{D}_{6}$	25	0	Mes	H	-10.6	10.6	4.2	6.1	19.7	-12.1	9.1	6.8	16.6	8.4	0.9	$J_{\text {CY }}=4.8, J_{\text {DY }}=2.6$
trans-10	$\mathrm{C}_{6} \mathrm{D}_{6}$	25	S	Ph	Me	-11.2	11.6	4.2	5.5	25.0	-11.4	11.6	4.2	5.8	25.8	2.2	$J_{\text {MeP }}=15.9$
trans-11	$\mathrm{C}_{6} \mathrm{D}_{6}$	25	0	Ph	Ph	-11.0	11.0	5.7	7.6	19.4		dece	ptivel	y simp	e		
trans-11	acetone- d_{6}	25	O	Ph	Ph	-11.0	10.6	5.9	8.4	18.1	-12.2	8.0	6.2	10.7	9.9	0.8	
trans-12	$\mathrm{C}_{6} \mathrm{D}_{6}$	25	O	Mes	Ph	-11.4	11.4	4.2	4.0	21.6	-11.8	11.7	4.5	4.3	18.0	2.0	
trans-12	acetone- d_{6}	25	0	Mes	Ph	-10.9	11.8	4.5	4.4	21.2	-11.2	11.2	4.7	4.3	17.6	1.9	
19	$\mathrm{C}_{6} \mathrm{D}_{6}$		MeO	0	H	-11.2	11.0	4.2	2.8	20.7	-12.6	11.6	4.6	4.4	26.6	2.6	
20	$\mathrm{C}_{6} \mathrm{D}_{6}$		MeO	S	H	-11.0	10.8	4.3	4.0	20.9	h	11.1	4.5	h	h	1.9	
20^{\prime}	acetone- d_{6}		McO	O	Ph	-10.8	11.0	3.8	3.6	19.1	-12.4	11.3	4.0	2.1	25.6	2.3	
$21^{\prime \prime}$	$\mathrm{C}_{6} \mathrm{D}_{6}$		MeO	O	Ph	-11.0	11.2	4.4	4.2	21.4	-11.6	11.2	4.2	2.4	19.6	2.1	
trans-58	$\mathrm{C}_{6} \mathrm{D}_{6}$		0	$\mathrm{Me}_{2} \mathrm{~N}$	Ph	-11.8	11.0	4.0	4.0	22.0	-10.5	11.0	3.0	5.0	17.5	2.6	

${ }^{a}$ Concentrations $\sim 10 \% \mathrm{w} / \mathrm{v}$. See structure 13 for proton assignments. ${ }^{b} \mathrm{H}_{\mathrm{Y}}=$ proton on N 3 . ${ }^{\text {c Simulated and iterated using LAOCN3. }{ }^{d} J_{\mathrm{XP}}=-0.7 \text { to }-1.0}$ Hz required to correctly simulate H_{X} spectrum in second-order cases. ${ }^{\circ}$ Closely coupled nature of H_{A} and H_{B} reduces the accuracy of these parameters. ${ }^{f}$ Reference 11. ${ }^{8}$ Reference $3 .{ }^{h} \mathrm{H}_{\mathrm{C}}$ and H_{D} overlapped.
stereomers of 8 meet the ${ }^{1} \mathrm{H}$ shift criterion. (The ${ }^{31} \mathrm{P}$ shifts are too similar to be useful.) Those for 12 are consistent with both the ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ chemical shift tests. Although only one diastereomer of 9 was isolated, the assignment is secured by the relative ${ }^{1} \mathrm{H}$ chemical shifts. Also, the change in conformational behavior of cis-9 compared to cis-6 is parallel to that seen for the thioxo analogues cis-7 and -10. Analogous relative ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ chemical shift trends have been noted for 5 -tert-butyl-2-oxo- and 2 -thi-oxo- $1,3,2 \lambda^{5}$-dioxaphosphorinanes. ${ }^{7}$ The ${ }^{1} \mathrm{H}$ shift effect stems from the deshielding influence of the axial $\mathrm{P}=\mathrm{O}$ on protons cis to it. The above $\delta\left(\mathrm{H}_{\mathrm{A}}\right)$ vs $\delta\left(\mathrm{H}_{\mathrm{B}}\right)$ criterion for assigning diastereomers may not work well, however, except for the 5 -tert-butyl compounds. The ${ }^{31} \mathrm{P}$ shift effect arises from the general correlation that substituents axial on phosphorus in at least some fraction of the conformations populated by a given diastereomer contribute to an upfield shifting of the ${ }^{31} \mathrm{P}$ resonance. ${ }^{7}$ The nearly coincidental $\delta\left({ }^{31} \mathrm{P}\right)$ values for the diastereomers of $\mathbf{6}$ and those of $\mathbf{8}$ cannot be readily explained.

Another corroborative NMR parameter for 6-12 is $\delta\left(\mathrm{H}_{\mathrm{X}}\right)$. In all cases measured in $\mathrm{C}_{6} \mathrm{D}_{6}$, the resonance for H_{X} for the cis diastereomer is downfield of that for its trans counterpart. This consistency, along with other chemical shift correlations and the X-ray structures for cis-8 and trans-12, gives assurance as to the correctness of the assignments.
${ }^{1} \mathrm{H}$ NMR Parameters and Conformations of cis-6-12. The conformational equilibria for $6-12$ were determined by inspection of ${ }^{3} J_{\mathrm{HH}}$ and ${ }^{3} J_{\mathrm{HP}}$ values obtained mostly by first-order ${ }^{1} \mathrm{H}$ NMR analysis at 300 MHz . Where second-order spectra were encountered, the parameters were obtained with the aid of the LAOCN3 program. NMR data are summarized in Tables I and II. The cis diastereomers will be discussed first ($\mathbf{X}=$ aryl; \mathbf{Y} $=\mathrm{O}, \mathrm{S}$). The guiding principle in relating ${ }^{3} J_{\mathrm{HP}}$ to conformation is the known Karplus-like relationship for HCOP and HCNP couplings. ${ }^{72}$ For phosphoryl derivatives (2-oxo) individual axial or equatorial couplings are generally independent of whether the

[^4]Table III. Estimated Percentage of $\mathbf{1 5}$ in Equilibrium $\mathbf{1 3} \rightleftharpoons \mathbf{1 5}$

	$\% 15$ based on^{a}							
compd	X	Y	R	J_{AP}	J_{BP}	av	$\Delta G^{\circ}(\mathbf{1 3} \rightarrow \mathbf{1 5})$	$\Delta \Delta G^{\circ}$
cis-6	Ph	O	H	21	25	23	0.68	
$c i s-11$	Ph	O	Ph	62	60	61	-0.25	-0.9
$c i s-8$	Mes	O	H	32	31	31	0.46	
$c i s-12$	Mes	O	Ph			>95	<-1.7	>-2.2
$c i s-4^{b, d}$	Me	N	O	H	19	21	20	0.62
$c i s-5^{c, d}$	$\mathrm{Me}_{2} \mathrm{~N}$	O	Ph	88	96	92	-1.0	-1.6

${ }^{a}$ Assumed J_{HP} values: $J_{\mathrm{AP}}(13)=2.3 \mathrm{~Hz} ; J_{\mathrm{AP}}(15)=23.5 \mathrm{~Hz} ; J_{\mathrm{BP}^{-}}$ (13) $=23.5 \mathrm{~Hz} ; J_{\mathrm{BP}}(15)=2.3 \mathrm{~Hz} .{ }^{b}$ Observed in $\mathrm{C}_{6} \mathrm{D}_{6}: J_{\mathrm{AP}}=6.2 \mathrm{~Hz}$; $J_{\mathrm{BP}}=17.0 \mathrm{~Hz}{ }^{3}{ }^{c}$ Observed in $\mathrm{C}_{6} \mathrm{D}_{6}: J_{\mathrm{AP}}=20.0 \mathrm{~Hz} ; J_{\mathrm{BP}}=5.0 \mathrm{~Hz}{ }^{3}$ ${ }^{d}$ Values assumed for cis-4 and $-5:^{3} J_{\mathrm{AP}}(13)=2.8 \mathrm{~Hz} ; J_{\mathrm{AP}}(15)=20.7$ $\mathrm{Hz} ; J_{\mathrm{BP}}(13)=20.7 \mathrm{~Hz} ; J_{\mathrm{BP}}(15)=2.8 \mathrm{~Hz}$.
phosphoryl oxygen is equatorial or axial. Equatorial protons of 2-thioxo derivatives have coupling constants a few hertz higher when the $\mathrm{P}=\mathrm{S}$ is axial. ${ }^{72}$

It is evident for cis-6-8 $(\mathrm{R}=\mathrm{H})$ that a chair-twist $(13 \rightleftharpoons 15)$ equilibrium exists in which chair conformation 13 greatly predominates (Table III). J_{AX} in each case is only slightly smaller than that observed for the cis-1,3,2 λ^{5}-oxazaphosphorinanes 19-21.

19. $R=H$ 21. $R=P h$

On the basis of the J_{HP} values, all can be argued to feature very nearly anancomeric equilibria with the small, electronegative MeO axial in chair conformation 13. However, for cis-6-8, J_{AP} is significantly increased and J_{BP} is somewhat reduced compared to 19-21. ${ }^{11}$ At the same time, $J_{\mathrm{CX}}, J_{\mathrm{CP}}, J_{\mathrm{DX}}$, and J_{DP} for cis-6-8 are similar to those of 19 and 20 . The data are readily explained by a contribution from twist conformation 15 in which the ni-trogen-containing side of the ring is unchanged from 13 (chairlike); but on the oxygen side of $15, \mathrm{H}_{\mathrm{A}}$ is pseudoequatorial (large J_{AP}) and H_{B} is pseudoaxial (small J_{BP}). ${ }^{12}$ A contribution from 14 is

[^5]excluded by the large value of J_{CX} found for all three ($J_{\mathrm{CX}}=$ $11.1-11.5 \mathrm{~Hz}$).

The 2 -oxo compounds with phenyl substituent at N 3 , cis-11 and -12, show changes in J_{HP} values (compared to 19-21) like those for cis-6-8 but much greater in degree. This is diagnostic of a larger population of $\mathbf{1 5}$. Most notable is the complete reversal in relative magnitudes of $J_{\mathrm{AP}}(18.4 \mathrm{~Hz})$ and $J_{\mathrm{BP}}(3.3 \mathrm{~Hz})$ values for cis-12 in which phenyl on phosphorus (cis-11) is replaced by the sterically very demanding mesityl group. Twist form 15 is evidently fully populated by cis-12. ${ }^{13}$ The small increase in J_{BX} and decrease in J_{AX} noted for cis-11 (and to a lesser degree for cis-8) has been seen previously when twist forms are populated. ${ }^{3,10}$ A less than maximal degree of twisting reduces the $\mathrm{H}_{\mathrm{A}} \mathrm{CCH}_{\mathrm{X}}$ dihedral angle below 180° (J_{AX} decreases), and at the same time $\angle \mathrm{H}_{\mathrm{B}} \mathrm{CCH}_{\mathrm{X}}$ decreases (J_{BX} increases).

The cis N 3 Me 2 -oxo derivative, cis-9, differs from cis-6, -7, -11, and -12 in that both J_{AP} and J_{CP} increase while their opposite couplings, J_{BP} and J_{DP}, decrease. Since J_{AX} and J_{CX} remain large (9.6 and 11.0 Hz) a mixture of twist form 16 as well as 15 appears to be present, but 14 is absent.

The 2 -thioxo compound corresponding to cis-9, i.e. cis-10, shows much larger changes in the J_{HX} and J_{HP} values. Indeed, the decrease of J_{CX} to 9.0 Hz could mean as much as 40% of the alternative chair conformation, 14, is populated. The remainder would be twist 15 and chair 13. Reduced J_{CX} would come from a large population of 15 , which is not fully twisted. Another possibility is that increased J_{AP} and J_{CP} result from major populations of twist 15 and 16 ($15>16$). In either case chair 13 is strongly depopulated.
${ }^{1} \mathrm{H}$ NMR Parameters and Conformations of trans-6-12. For the trans diastereomers, chair-twist equilibria also are evident. Thus, depopulation of chair 13 ($\mathrm{X}=\mathrm{O}, \mathrm{S}$; $\mathrm{Y}=$ aryl) and population of twist 16 by trans-6-8 $(\mathrm{R}=\mathrm{H})$ is attested to by the large increases in J_{CP} and major decreases in J_{DP}. These changes are greater in fact than those seen for cis-6-8 for J_{AP} and J_{BP}. Again, the large values of $J_{\mathrm{AX}}(10.6-11.2 \mathrm{~Hz})$ rule out the presence of chair form 14 in more than very minor quantities. While $J_{A P}$ and J_{BP} are similar to those for 19-21, J_{AP} is somewhat increased and J_{BP} is decreased, as would be true were a small percentage of twist 15 also present. Most notable is the fact that the twist conformer largely populated is now 16 not 15 . The small changes in J_{CX} (decreased) and J_{DX} (increased) are readily explained, as were J_{AX} and J_{BX} for cis-9 and -11. That is, the ring is not twisted completely into 15. It structure is somewhere between a boat form, with C5 and P at bowsprit positions, and 15.

Considering the trans diastereomers of the N3Ph and N3Me derivatives (10-12), it is clear that trans-12 is almost entirely in chair conformation 13 with J_{HP} values much like those of trans-5 (Table II). The changes in J_{CP} and J_{DP}, compared to those for 21, suggest a very minor amount of twist 16 could be present for trans-5 and -12. trans-10 also is predominately, if not completely, in the chair form 13 as seen by inspection of its J_{HP} values, which are very close to those of the 2-thioxo analogue of trans-5 (J_{AP} $=5.0 \mathrm{~Hz}, J_{\mathrm{BP}}=26.0 \mathrm{~Hz}, J_{\mathrm{CP}}=4.5 \mathrm{~Hz}, J_{\mathrm{DP}}=24.0 \mathrm{~Hz}$). trans -11 , on the basis of arguments given above for other systems, however, shows the presence of an equilibrium involving chair 13 and both twist forms, 15 and 16, with 16 predominant. The low value of $J_{\mathrm{CX}}(8.0 \mathrm{~Hz})$ reflects the lack of complete twisting in 16 seen above for trans-6-8. The sum of J_{CP} and $J_{\mathrm{DP}}(20.6 \mathrm{~Hz})$ is considerably reduced as well in comparison to trans-6-8.

Another parameter, which shows itself useful in these and analogous studies, ${ }^{3,4,10,11}$ is J_{BD}. In each instance in which the J_{HP} values confirm the primary population of the chair conformation (cis-6-8, trans-10 and -12, and 19-21), J_{BD} is of the order of ≥ 2 Hz . In a chair conformation, only H_{B} and H_{D} are in the "W" arrangement required for ${ }^{4} J_{\mathrm{HH}}$ to be relatively large.

X-ray Crystal Structure of cis-8. An ORTEP perspective drawing of cis-8, along with the labeling scheme, is shown in Figure 1. The

[^6]Table IV. Crystallographic Data for cis-2-Mesityl-2-oxo-5-tert-butyl-1,3,2 λ^{5}-oxazaphosphorinane ${ }^{a}$

mol formula	$\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{P}$
mol wt	294.36
cryst syst	orthorhombic
space gp	Pbca (No.61) ${ }^{\text {b }}$
cell dimens	
a, \AA	12.095 (7)
b, \AA	11.191 (4)
c, \AA	24.525 (13)
V, \AA^{3}	3319 (3)
Z	8
$d_{\text {obsd }}, \mathrm{g} \mathrm{cm}^{-3}$	1.18 (1) ${ }^{\text {c }}$
$d_{\text {calcd }}, \mathrm{g} \mathrm{cm}^{-3}$	1.18
abs coeff (μ_{λ}), cm^{-1}	1.72
scan speed, deg $\min ^{-1}$	variable (2.0-20.3) as a function of refln intensity
scan range (20), deg	-1.0 to +1.0
ratio of bckgd time to peak scan time	0.5
std reflen	$(6,0,0),(0,6,0),(0,0,14)$ $\text { recolled every } 97 \text { reflen }$
max dev of stds, \%	10, random
no. of data collcd	3456
no. of unique data	3355
no. of data used	$1547, I>3 \sigma(I)$

${ }^{a}$ The estimated standard deviation of the least significant figure is given in parentheses in this table and in the tables that follow. ${ }^{b}$ The space group was unambiguously determined from the systematic absences: $0 k l, k \neq 2 n ; h 0 l, l \neq 2 n ; h k 0, h \neq 2 n$. ${ }^{c}$ The density was determined by the flotation method using carbon tetrachloride and n decane.

Table V. Fractional Atomic Coordinates for cis-8

atom	x	y	z
P	$0.56191(9)$	$0.40847(10)$	$0.07316(5)$
O2	$0.63314(24)$	$0.43540(25)$	$0.02625(12)$
O1	$0.62363(23)$	$0.43368(23)$	$0.12922(11)$
N3	$0.45601(27)$	$0.4981(3)$	$0.07732(14)$
C6	$0.5573(4)$	$0.4432(4)$	$0.17809(18)$
C5	$0.4781(4)$	$0.5467(4)$	$0.17502(18)$
C4	$0.3973(4)$	$0.5261(4)$	$0.12824(20)$
C11	$0.5286(3)$	$0.2506(4)$	$0.07546(16)$
C12	$0.4242(4)$	$0.2025(4)$	$0.6340(17)$
C13	$0.4095(4)$	$0.0792(4)$	$0.06424(19)$
C14	$0.4943(4)$	$0.0005(4)$	$0.07556(21)$
C15	$0.5979(4)$	$0.0487(4)$	$0.08594(19)$
C16	$0.6175(4)$	$0.1704(4)$	$0.08641(16)$
C18	$0.3246(4)$	$0.2766(5)$	$0.04790(22)$
C19	$0.4751(4)$	$-0.1323(4)$	$0.07628(24)$
C17	$0.7335(4)$	$0.2110(4)$	$0.09769(20)$
C7	$0.4219(4)$	$0.5751(4)$	$0.23048(19)$
C9	$0.5100(5)$	$0.6082(5)$	$0.27263(22)$
C8	$0.3546(5)$	$0.4703(6)$	$0.25239(25)$
C10	$0.3443(5)$	$0.6816(5)$	$0.22366(24)$

Table VI. Bond Distances (\AA) for cis- 8

$\mathrm{P}-\mathrm{O} 2$	$1.469(3)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.404(6)$
$\mathrm{P}-\mathrm{O} 1$	$1.590(3)$	$\mathrm{C} 11-\mathrm{C} 16$	$1.426(6)$
$\mathrm{P}-\mathrm{N} 3$	$1.630(4)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.392(6)$
$\mathrm{P}-\mathrm{C} 11$	$1.813(5)$	$\mathrm{C} 12-\mathrm{C} 18$	$1.511(6)$
$\mathrm{O} 1-\mathrm{C} 6$	$1.446(5)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.379(6)$
$\mathrm{N} 3-\mathrm{C} 4$	$1.471(5)$	$\mathrm{C} 14-\mathrm{C} 15$	$1.388(6)$
$\mathrm{C} 6-\mathrm{C} 5$	$1.504(6)$	$\mathrm{C} 14-\mathrm{C} 19$	$1.504(7)$
$\mathrm{C} 5-\mathrm{C} 4$	$1.525(6)$	$\mathrm{C} 15-\mathrm{C} 16$	$1.382(6)$
$\mathrm{C} 5-\mathrm{C} 7$	$1.554(6)$	$\mathrm{C} 16-\mathrm{C} 17$	$1.500(6)$
$\mathrm{C} 7-\mathrm{C} 9$	$1.531(7)$	$\mathrm{N} 3-\mathrm{HN} 3$	$1.139(3)$
$\mathrm{C} 7-\mathrm{C} 8$	$1.524(7)$	$\mathrm{O} 2 \cdots \mathrm{HN} 3$	$1.823(5)$
$\mathrm{C} 7-\mathrm{C} 10$	$1.527(7)$		

crystallographic data for cis-8 are listed in Table IV. Atomic coordinates for non-hydrogen atoms appear in Table V. Bond lengths and bond angles are given in Tables VI and VII, respectively. The compound adopts, in the crystalline state, chair conformation 13. Figure 1 clearly shows the mesityl substituent

Table VII. Bond Angles (deg) for cis-8

O2-P-O1	$111.4(2)$	C9-C7-C8	$108.7(5)$
O2-P-N3	$112.6(2)$	C9-C7-C10	$108.2(4)$
O2-P-C11	$110.8(2)$	C8-C7-C10	$108.1(5)$
O1-P-N3	$101.9(2)$	C12-C11-C16	$118.5(4)$
C11-P-O1	$104.5(2)$	C11-C12-C13	$119.4(4)$
C11-P-N3	$115.0(2)$	C11-C12-C18	$124.1(4)$
P-O1-C6	$118.0(3)$	C13-C12-C18	$116.5(4)$
P-N3-C4	$124.3(3)$	C12-C13-C14	$122.8(4)$
P-C11-C12	$124.5(3)$	C13-C14-C15	$117.4(4)$
P-C11-C16	$116.8(3)$	C13-C14-C19	$121.2(4)$
C5-C6-O1	$111.6(4)$	C15-C14-C119	$121.4(5)$
C5-C4-N3	$111.2(4)$	C14-C15-C16	$118.7(5)$
C6-C5-C4	$109.2(4)$	C11-C16-C15-C15	$119.3(4)$
C5-C7-C9	$109.6(4)$	C15-C16-C17	$123.3(4)$
C5-C7-C8	$112.7(4)$	N3-HN3-O2	$148.7(4)$
C5-C7-C10	$109.4(4)$		

to be axial, while the tert-butyl is equatorial. This conformation is the same as that primarily populated in solution. The mesityl group sits crosswise to a vertical plane through atoms P and C5. Thus, $\angle \mathrm{C} 16-\mathrm{C} 11-\mathrm{P}-\mathrm{O}_{2}=67.0^{\circ}$ and $\angle \mathrm{C} 12-\mathrm{C} 11-\mathrm{P}-\mathrm{O} 2=108.2^{\circ}$. The inequality of these angles is in accord with the differences in the nonbonding distances $\mathrm{C} 11-\mathrm{C} 4(3.702 \AA$) and $\mathrm{C} 11-\mathrm{C} 6$ ($3.332 \AA$). The resulting distances $\mathrm{C} 18-\mathrm{HC4}^{\prime}(3.568 \AA$) and C17-HC6' $(2.927 \AA$) are consistent with the above dihedral angles (C16-C11-P-O2 and C12-C11-P-O2). The very short C17HC6' distance has no ready explanation. The atoms $\mathrm{O} 1-\mathrm{P}-\mathrm{N} 3$ and C4-C5-C6 define two planes, 1 and 2. The interplane angles between the best plane through atoms $\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 6-\mathrm{O} 1$ and the above planes define the pucker of the chair ring. For plane 1 and N3-C4-C6-O1, a value of 32.9° is found; while for plane 2 and $\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 6-\mathrm{O} 1$, the angle is 51.3°. The flattening seen about phosphorus is typical of 1,3,2-oxazaphosphorinanes and indeed is well within the range found for other structures with axial substituents on phosphorus. ${ }^{4,9,11}$ Rings with substituents equatorial show decreased flattening. ${ }^{14}$ The interplane angle at the C5 end of the ring for cis-8 is unexceptional. Interestingly, as is typical of $\mathrm{P}-\mathrm{N}$ bonds, ${ }^{4,8,8-10,14,15}$ the axial $\mathrm{P}-\mathrm{C} 11$ bond of cis- 8 is longer, 1.813 (5) \AA, than the equatorial one of trans-12, 1.803 (2) \AA. Anomeric effect ${ }^{16}$ arguments have usually been used to rationalize such differences in the $\mathrm{P}-\mathrm{N}$ systems. In this regard, the $\mathrm{P}-\mathrm{N} 3$ bond length in cis-8, 1.630 (4) \AA, is shorter than that in trans-12, 1.670 (2) \AA, as is consistent with the anomeric effect rationale. The phenyl substitution at N 3 in trans -12 may, however, also play an important role in lengthening the $\mathrm{P}-\mathrm{N} 3$ bond. Nonetheless, the suggestion that the $\mathrm{P}-\mathrm{C}$ (aryl) σ^{*} orbital is involved with acceptance of adjacent lone pairs (O or N) is somewhat unusual. These effects normally are involved for $\mathrm{P}-\mathrm{X}$ bonds with $\mathrm{X}=\mathrm{Cl}$, O , and N (electronegative substituents).

Discussion

It is clear from the above results that the relative populations of 13-16 depend greatly on the particular substituent at N3 and on phosphorus and on whether the diastereomer is cis or trans. In discussing the possible origins of effects of structural changes on the relative energies of conformations, it is useful to cautiously assign approximate conformer populations to those equilibria that involve primarily two structures. This is readily done if reasonable values can be assumed for J_{AP} and J_{BP} in the two structures.

[^7]

Figure 3. $\mathrm{Me}_{2} \mathrm{~N} / \mathrm{N} 3 \mathrm{Ph}$ steric repulsions in cis-5 based on a Dreiding model. Hemispheres approximate atomic radii (taken from ref 3).
(Because of the obvious effect of the substituent at N 3 on J_{CP} and J_{DP}, we generally do not use these parameters.) E.g., for equilibrium $13 \rightleftarrows 15$, as we have shown previously, ${ }^{3,11}$ mole fraction 15 can be calculated from the measured J_{AP} using the equation below. A completely analogous equation may be written in terms of J_{BP}.

$$
\mathrm{N}(15)=\left[J_{\mathrm{AP}}(\text { obsd })-J_{\mathrm{AP}}(13)\right] /\left[J_{\mathrm{AP}}(15)-J_{\mathrm{AP}}(13)\right]
$$

Cis Derivatives. As noted in the Results, cis-6, -8 , and -11 all feature the chair-twist equilibrium $13 \rightleftarrows 15$. Since the sum $J_{A P}$ $+J_{\mathrm{BP}}$ for these compounds ($25.0-26.1 \mathrm{~Hz}$) is greater than that for $19(23.5 \mathrm{~Hz})$, the values for $J_{\mathrm{AP}}(23.5 \mathrm{~Hz})$ and $J_{\mathrm{BD}}(2.3 \mathrm{~Hz})$ for the $\mathrm{P}-\mathrm{OPh}$ analogue of 3 , which should be entirely in one chair form, were employed ($J_{\mathrm{AB}}+J_{\mathrm{BP}}=25.8 \mathrm{~Hz}$). It was assumed that the couplings to phosphorus for H_{A} and H_{B} are simply interchanged in $\mathbf{1 3}$ and 15 . This will be true if $\mathbf{1 5}$ is sufficiently twisted. Decreased twisting of $\mathbf{1 5}$ would reduce both $J_{\mathrm{AP}}(15)$ and $J_{\mathrm{BP}}(15)$ as then $\angle \mathrm{H}_{\mathrm{A}} \mathrm{COP}$ is less than 180° and $\angle \mathrm{H}_{\mathrm{B}} \mathrm{COP}$ is greater than 60°. Since the sum J_{AP} and J_{BP} in the series cis-6, cis-8, and cis-11 does not change, 15 appears to be sufficiently twisted. (As will be noted later, twisting the ring gives rise to J_{AP} and J_{BP} values like those of the chair before this is true of J_{CP} and J_{DP}. A large $J_{\mathrm{AP}}+J_{\mathrm{BP}}$ sum also is reconciled in this way with the reduced J_{AX} and increased J_{BX} for cis-11.) Estimates of the populations of $\mathbf{1 5}$ for the series of cis diastereomers appear in Table III. Populations based on J_{AP} agree well with those from use of J_{BP}. Clearly, the actual percentage of 15 in each case is only an estimate. However, the trends in populations are certainly valid. Values of $\Delta \Delta G^{\circ}$ are likely reasonably valid.

What is evident is that when an axial phenyl is on phosphorus, substitution of a phenyl for hydrogen at N3 depopulates chair conformer $13\left(\Delta \Delta G^{\circ}(13 \rightarrow 15)\right.$, cis- 6 vs cis $\left.-11, \cong 0.9 \mathrm{kcal} / \mathrm{mol}\right)$. This is the same effect noted earlier ${ }^{3}$ with $\mathrm{Me}_{2} \mathrm{~N}$ axial on phosphorus when cis-4 and -5 are compared. The axial phenyl substituent at phosphorus, however, feels the effect of the N 3 Ph somewhat less than does the axial $\mathrm{Me}_{2} \mathrm{~N}$. cis- 5 was earlier reported to be very largely in the twist conformation 15. This is confirmed in Table III using $J_{\mathrm{AP}}(20.0 \mathrm{~Hz})$ and $J_{\mathrm{BP}}(5.0 \mathrm{~Hz})$ values in $\mathrm{C}_{6} \mathrm{D}_{6}$ previously reported and the slightly different assumed couplings for $\mathbf{1 3}$ and $\mathbf{1 5}$ of that study, which are more consistent with the lower sum of J_{AP} and J_{BP} for cis-4 and -5. Moreover, $\Delta \Delta G^{\circ}(\mathbf{1 3} \rightarrow \mathbf{1 5})$ for cis-4 vs cis-5, as earlier reported, ${ }^{3}$ is 1.6 $\mathrm{kcal} / \mathrm{mol}$. (Use of the assumed couplings for 13 and 15 of the present study (Table III) only lowers the estimated percentage of $\mathbf{1 5}$ populated by cis- 5 to 87%.)

We interpreted ${ }^{3}$ the effect of N 3 Ph on the equilibrium of cis-5 to be a steric one in which conformation 13 is destabilized by repulsive interactions between the N 3 Ph ortho hydrogens and the $\mathrm{Me}_{2} \mathrm{~N}$ methyl, Figure 3. The axial Ph at phosphorus of cis-11 cannot bisect the six-membered ring because of interactions with the axial hydrogens at C4 and C6. In the conformation approximated by 22, which is similar to that depicted in Figure 1,

22. $R=H, P h ; Z=H, M e$
the ortho hydrogens of the phenyl ring $(22, Z=H)$ will experience repulsive interactions with the N 3 Ph group, which will have an orientation similar to that in Figures 1 and 2. However, in twist conformation 15 such interactions are relieved. According to CPK models the pseudoequatorial phenyl on phosphorus in 15 is relatively free of steric interactions when it is coplanar with the $\mathrm{P}=0$ bond. (See also Figure 2.)

The steric nature of the effect of a Ph at N 3 is further defined by comparing cis-11 with cis-12 in which the size of the phenyl group on phosphorus is greatly increased by the ortho methyls of the mesityl group, $17\left(\mathrm{Z}=\mathrm{CH}_{3}\right)$. As a result for cis- 12 the $J_{\mathrm{AP}}(18.4 \mathrm{~Hz})$ and $J_{\mathrm{BP}}(3.3 \mathrm{~Hz})$ values are nearly the reverse of those in 19, just as expected if a flexible conformation close to 15 is now nearly 100% populated ${ }^{3,10}\left(\Delta \Delta G^{\circ}(13 \rightarrow 15)\right.$, cis-8 vs cis $-11, \geq 2.2 \mathrm{kcal} / \mathrm{mol})$. The $J_{\mathrm{CP}}(1.5,1.0 \mathrm{~Hz})$ and $J_{\mathrm{CP}}(11.4,12.9$ Hz) parameters also are unusual. Although Ph at N 3 evidently attenuates the value of ${ }^{3} J_{\mathrm{HP}}$ through nitrogen (see, e.g., 21 vs 19), the extreme reduction in the sum of J_{CP} and $J_{\mathrm{DP}}(12.9-13.9 \mathrm{~Hz})$ for cis-12 is exactly what Dreiding models predict if a boat conformation with P and C5 at bowsprit positions indeed were twisted in the direction of 15 , but not fully so (J_{CX} and J_{DX} unperturbed). This pseudorotational twisting motion brings the hydrogens at $\mathrm{C} 4\left(\mathrm{H}_{\mathrm{A}}\right.$ and $\left.\mathrm{H}_{\mathrm{B}}\right)$ into approximate $180^{\circ}\left(\mathrm{H}_{\mathrm{A}}\right)$ and $60^{\circ}\left(\mathrm{H}_{\mathrm{B}}\right)$ HCOP dihedral angular relationships with phosphorus before this occurs for $\mathrm{H}_{\mathrm{C}}, \mathrm{H}_{\mathrm{D}}$, and $\angle \mathrm{HCNP}$. (See above discussion for cis-6, 8, and 11.) The $\angle H C N P$ angles of $<180^{\circ}$ for H_{C} and $>60^{\circ}$ for H_{D} reduce both J_{CP} and J_{DP}. The reduction in J_{CP} and J_{DP} is seen to a lesser degree with cis-11, which strongly populates 15, but less fully than does cis-12. There can be no doubt that the above phenomena have steric origins.

The very strong steric destabilization of the axial mesityl in cis-12 is dramatized by the fact that a CPK model for chair form 13 cannot even be constructed for cis-12. With hydrogen at N3, cis-8, such a model is easily assembled. The only small increase in size for mesityl compared to phenyl noted in Table III (cis-6 vs cis-8) is completely consistent with what the CPK models reveal.

Unlike the phenyl substituent, methyl will not inductively withdraw the N3 lone pair and destabilize 13. One may presume, therefore, that the depopulation of $13 \mathrm{by} \mathrm{CH}_{3}$ at N 3 , observed for cis-9 and -10 (Table II), is totally a steric result. (Compare cis- 6 with cis-9 and cis-7 with cis-10.) Since more than one twist (15 and 16) and for cis-10 perhaps even a second chair form (14) are populated in these systems, quantitative numbers like those in Table III cannot be obtained. This is the first instance of relief of strain in a chair conformer like 13 of a cis diastereomer through formation of any other conformer except 15. Methyl at N3 is evidently not so effective at destabilizing 13 in cis oxides as is phenyl, as simple comparisons of the couplings show. Likewise, it appears not to differentiate so readily the energies of flexible forms, if indeed both 15 and 16 are populated.

Finally, it is worth noting that increasing the temperature of solutions of cis-9 and cis-10 increases the population of the twist conformation (Table II). Though twist forms are readily populated energetically, they are of higher enthalpy than chair conformations.

Trans Derivatives. The trans diastereomers of this study show some unusual conformational properties as well. Most notable is the relative ease with which chair conformers are converted into twist forms. The only $\mathrm{P}=\mathrm{O}$ compound almost entirely in the chair form 13 is trans-12. Its J_{HP} values are nearly identical with those of trans-5 listed in Table II. Evidently the pseudoaxial mesityl substituent, like $\mathrm{Me}_{2} \mathrm{~N}$, interacts very strongly in twist form 15 or 16 with the Ph at N3.

For trans-6, -8, and -11, the values of J_{HP}, compared to those of trans-12, clearly show depopulation of chair form 13. The major nonchair form populated by trans-6, -8 , and -11 is twist conformation 16. This is in contrast to the situation with the corresponding cis diastereomers, which move out of the chair primarily into conformation 15. A minor amount of $\mathbf{1 5}$ is found in the equilibria for the trans isomers as well as evidenced by increases in J_{AP} and decreases in J_{BP} in the order trans- $6 \cong \operatorname{trans}-8<$ trans-11. Because of the three-part nature of the equilibrium, calculation of percentages of conformers would be imprecise. A
discussion of trends in populations, however, is worthwhile.
Evidently, barring the strong N3 Ph/PMes interaction of trans-12, the twist forms $(15<16)$ are quite energetically accessible to the trans-2-oxo-1,3,2 λ^{5}-oxazaphosphorinanes, trans-6-8 and -11; all are $>50 \%$ in the twist conformation $\left(J_{\mathrm{CP}}>J_{\mathrm{DP}}\right)$. The phenyl clearly seeks to be pseudoaxial and provides the driving force for the interconversion $23 \rightarrow 24$. Earlier it was reported ${ }^{11}$

that the trans analogue of POMe compound 19 is to a great extent in conformation equivalent to 24 (16), $\mathrm{Ph}=\mathrm{MeO}$. From its coupling constants ($J_{\mathrm{AP}}=7.6 \mathrm{~Hz}, J_{\mathrm{BP}}=16.6 \mathrm{~Hz}, J_{\mathrm{CP}}=17.2 \mathrm{~Hz}$, $J_{\mathrm{DP}}=8.9 \mathrm{~Hz}$), the population of $\mathbf{1 6}$ by the trans POMe compound clearly is greater than that for trans-6. trans-4 was seen to be almost entirely in the chair conformation with $t-\mathrm{Bu}$ and $\mathrm{Me}_{2} \mathrm{~N}$ both equatorial. ${ }^{3}$ The tendency of phosphorus substituents of trans-1,3,2-oxazaphosphorinanes with H at N3 to be pseudoaxial is thus $\mathrm{MeO}>\mathrm{Ph}>\mathrm{Me}_{2} \mathrm{~N}$. The population of twist forms with Ph or $\mathrm{Me}_{2} \mathrm{~N}$ pseudoaxial is close to negligible in the trans-2-phenyl- and 2-(dimethylamino)-2-oxo-5-tert-butyl-1,3,2 λ^{5}-dioxaphosphorinane series. ${ }^{7 c, d}$ This is consistent with the generally greater ease of putting substituents axial or pseudoaxial in the $1,3,2 \lambda^{5}$-oxazaphospha series. ${ }^{4,11}$

It is at first surprising that trans-11 $(\mathrm{R}=\mathrm{Ph})$ depopulates the chair to about the same extent as does trans-6 $(\mathrm{R}=\mathrm{H})$. The twist conformation, $\mathbf{1 5}$ or $\mathbf{1 6}$, might be expected to bring into play for trans- 11 destabilizing N3Ph/PPh pseudoaxial interactions similar to those discussed above for cis-11. However, it is important to point out a significant difference between the chair \rightleftarrows twist equilibria for the trans and cis diastereomers. The nonrigid twist forms with a substituent ($\mathrm{MeO}, \mathrm{Ph}, \mathrm{Me}_{2} \mathrm{~N}$, etc.) pseudoaxial are able to flex by pseudorotation to minimize steric interactions within the ring system. Thus, only with the severe N3Ph/PMes case is a strong destabilization of the twist in evidence. By contrast, cis- 11 feels the full destabilizing effect of the $\mathrm{N} 3 \mathrm{Ph} / \mathrm{PPh}$ interaction in the rigid chair 13.

This flexible feature of the trans twist conformations was noted in the previously reported effect of phenyl substituent on the 15 $\rightleftarrows 16$ equilibrium for the above-mentioned trans methoxy compound. ${ }^{11}$ The N3H compound strongly favors 16 , while the N3Ph compound is largely in conformation 15. This effect was noted above for trans-11 although it is much less important than for the POMe case. ${ }^{11}$ This variation in $\mathbf{1 5} \rightleftharpoons \mathbf{1 6}$ equilibrium most likely involves changes in interactions between substituents on the N3-P bond in different conformations. The influence on $15 \rightleftarrows$ 16 for the cis diastereomers of substituent at N3 is seen in comparing the $\mathrm{NH}, \mathrm{NMe}$, and NPh compounds.

A most unusual observation comes from comparison of trans-6 and -8. Clearly, for the cis diastereomers of 6 and 8, the mesityl is slightly larger (Table III) than phenyl ($\Delta \Delta G^{\circ} \cong 0.2 \mathrm{kcal} / \mathrm{mol}$). This observation should extrapolate to a lesser depopulation of the trans chair diastereomer 13 by trans-8. However, the J_{HP} values for trans-6 and trans-8 leave no doubt that trans-8 is less in the chair than is trans-6. Evidently in this surprising case, the equatorial mesityl is destabilized in chair 13, and this strain is removed in the flexible twist form analogous to 19. (See above discussion of trans-6 vs trans-11.) Both Dreiding and CPK models make it clear that the equatorial mesityl, unlike its axial counterpart, experiences severe steric interactions, regardless of the conformation about the P-C (mesityl) bond. Such interactions are clearly evident in the X-ray crystal structure of trans-12, Figure 3 , in the $\mathrm{P}-\mathrm{C}$ (mesityl) conformation it assumes. (The details of this structure determination will be reported elsewhere. ${ }^{5}$) In twist 16 the pseudoaxial mesityl experiences but one 1,3-synaxial interaction, that with pseudoaxial H_{D} at C 4 . Therefore, the Ph and Mes of trans-6 and -11 should be more nearly equal in steric size in 16 than in the rigid chair 13. This will allow the desta-
bilization of $\mathbf{1 3}$ by equatorial mesityl to be fully expressed in the equilibrium $\mathbf{1 3} \rightleftarrows \mathbf{1 6}$ for trans-8. Obviously the steric destabilization of the pseudoequatorial mesityl is not so great as to prevent the near-complete population of the twist conformation by cis-12.
The trans 2-thioxo compounds, trans-7 and trans-10, represent an interesting comparison in themselves and also to the 2-oxo series. trans- 7 displays an equilibrium composed of the same set of conformers populated by the 2-oxo analogue, trans-6. Again, the presence of three forms prohibits meaningful quantitation, but comparing J_{CP} and J_{DP} makes it clear that while trans- 6 remains $<50 \%$ in chair conformation 13, trans- 7 is $>50 \%$ in that form. The methyl at N 3 of trans- $\mathbf{1 0}$ evidently renders twist conformations even less stable than those from trans-7. The J_{HP} values are very close to those of the thioxo analogue of trans-3, which is nearly entirely in the chair ($J_{\mathrm{AP}}=5.0 \mathrm{~Hz}, J_{\mathrm{BP}}=26.0$ $\left.\mathrm{Hz}, J_{\mathrm{CP}}=4.5 \mathrm{~Hz}, J_{\mathrm{DP}}=24.0 \mathrm{~Hz}\right){ }^{3}$ It should be noted that trans-2-(dimethylamino)-2-thioxo-5-tert-butyl-1,3,2 λ^{5}-oxazaphosphorinane crystallizes in the chair conformation with $\mathrm{Me}_{2} \mathrm{~N}$ and t - Bu axial. ${ }^{8}$ Evidently, crystal packing alone is sufficient to force both substituents axial.

No generalization can be made concerning the relative ease of population of nonchair forms by the corresponding 2-thioxo vs 2 -oxo analogues of either the trans or cis diasteromer. Some orderings with respect to depopulation of chair conformation 13 are the following: cis $-7(\mathrm{P}=\mathrm{S}) \cong c i s-6(\mathrm{P}=\mathrm{O}) ; c i s-10(\mathrm{P}=\mathrm{S})$ $>$ cis $-9(\mathrm{P}=\mathrm{O})$; trans $-7(\mathrm{P}=\mathrm{S})<$ trans $-6(\mathrm{P}=\mathrm{O})$.

Conclusions

The above results demonstrate that the distribution of molecules between conformations 13-16 depends strongly on the following: the nature of the substituent on $\mathrm{N} 3(\mathrm{H}, \mathrm{Me}$, or Ph$)$; the substituent, Mes or Ph, on phosphorus; and the diastereomer, cis or trans, under consideration. For the cis diastereomers, the primarily N3R/PAr repulsive steric nature of effects that destabilize chair 13 is clearly shown by the chair \rightleftarrows twist equilibria comparison for cis-6 vs cis-11 $\left(\Delta \Delta G^{\circ}=0.9 \mathrm{kcal} / \mathrm{mol}\right)$ compared to cis-8 vs cis-12 $\left(\Delta \Delta G^{\circ}=\geq 2.2 \mathrm{kcal} / \mathrm{mol}\right)$. The $1.3 \mathrm{kcal} / \mathrm{mol}$ difference in $\Delta \Delta G^{\circ}$ must result from the much greater effective steric size of the axial mesityl interacting with N3Ph compared to that for an axial phenyl. (Any electronic effect of the methyl groups on the mesityl should be similar in cis-8 and -11.) Indeed, the effect of N 3 Ph vs N 3 H for the axial substituents we have examined so far decreases in the order Mes $>\mathrm{Me}_{2} \mathrm{~N}>\mathrm{Ph}(2.2>1.6>0.9$ $\mathrm{kcal} / \mathrm{mol}$). The destabilization of $\mathbf{1 3}$ in cis-9 and -10 by a methyl at N3 further confirms the steric origins of the effects of substitution at N3 on chair \rightleftharpoons twist since NMe should more readily stabilize an axial phenyl via $n-\sigma^{*}$, anomeric effectlike interactions than would NH.

We conclude that the effects noted for the series of cis rings with $\mathrm{Ph}, \mathrm{CH}_{3}$, and H on N 3 and Mes, Ph , and $\mathrm{Me}_{2} \mathrm{~N}$ on phosphorus have largely steric origins. That electronic effects (e.g. the relative energies of N 3 lone pairs involved in $\mathrm{n}-\sigma^{*}$ interactions) still could play some minor role in these equilibria is not ruled out. Stereoelectronic effects are under study in this laboratory in systems in which steric effects are constant.

Twist conformations are highly populated by trans-6-8 and -11, evidently because the aryl group prefers to be pseudoaxial, and 1,3-synaxial repulsions are minimal in twist conformations. Most surprising is the strong depopulation of chair conformation 13 by trans-8, apparently as a result of dominant steric repulsions involving the equatorial mesityl of the chair form. For both cis and trans diastereomers, the $15 \rightleftharpoons 16$ equilibrium is somewhat sensitive to the substituent (H, Ph, or Me) on N3. Overall the tendency of substituents to be pseudoaxial in the trans N3H compounds is $\mathrm{MeO}>\mathrm{Ph}>\mathrm{Me}_{2} \mathrm{~N}$.

Experimental Section

Methods and Materials. Analyses were carried out by Atlantic Microlab, Inc., Atlanta, GA, and Galbraith Laboratories, Inc., Knoxville, TN. Melting points are uncorrected. Infrared spectra were obtained on a Perkin-Elmer 298 spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were taken on a Varian SC 300 spectrometer, operated in the FT mode, or on a Varian EM 390 CW instrument. Coupling constants were measured at

300 MHz on $100-\mathrm{Hz}$ expansions, 32 K data base, and $5.5-\mathrm{s}$ acquisition times and are probably accurate to $\pm 0.2 \mathrm{~Hz}$. ${ }^{31} \mathrm{P}$ NMR spectra were collected at 32.2 MHz on a Varian FT-80A spectrometer under proton noise decoupling conditions. Positive ${ }^{31} \mathrm{P}$ chemical shifts are (ppm) downfield from external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$. The mass spectrometer used was a VG Micromass 7070 double-focusing high-resolution instrument with VG Data System 2000 in the EI mode, direct inlet sampling.
cis-and trans-2-Phenyl-2-oxo-5-tert-butyl-1,3,2 λ^{5}-oxazaphosphorinane (6). A solution of phenylphosphonic dichloride ($4.46 \mathrm{~g}, 22.9 \mathrm{mmol}$) in anhydrous ethyl acetate (45 mL) was added slowly, at room temperature, to a stirred solution of 2-(hydroxymethyl)-3,3-dimethylbutylamine ${ }^{3}$ $(3.00 \mathrm{~g}, 22.9 \mathrm{mmol})$ and anhydrous triethylamine ($4.63 \mathrm{~g}, 45.7 \mathrm{mmol}$) in anhydrous ethyl acetate (30 mL). The reaction mixture was stirred at room temperture for 48 h . Triethylamine hydrochloride was filtered off. The solvent was removed in vacuo to give a solid residue, which was recrystallized from ethyl acetate to give 5.01 g (86% yield) of a mixture of cis- and trans-6. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{NP}$: C, 61.65; H, 7.96; $\mathrm{P}, 12.23$. Found: C, $61.81 ; \mathrm{H}, 8.00 ; \mathrm{P}, 12.30$. A $265-\mathrm{mg}$ sample of the purified mixture of diastereomers was chromatographed by MPLC on silica gel, eluting with $\mathrm{EtOH} / \mathrm{EtOAc}(1: 20)$, to give 63 mg of pure cis-6, 55 mg of pure trans-6, and 124 mg of a pure mixture of diasteomers. cis-6: mp 113-115 ${ }^{\circ} \mathrm{C}$; ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) ~ \delta 19.47$; IR (KBr) 3200 ($\mathrm{N}-$ H), 2950, 1625, 1566, 1434, 1365, $1188(\mathrm{P}=\mathrm{O}), 1131,1049,1030,996$, $800,740,690 \mathrm{~cm}^{-1}$. trans-6: mp 128-130 ${ }^{\circ} \mathrm{C}$; ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 18.96$; IR (KBr) $3220(\mathrm{~N}-\mathrm{H}), 3160,2945,1456,1436,1360,1319,1196(\mathrm{P}=$ O), 1140, 1122, 1079, 1028, 1003, 843, 793, 739, $692 \mathrm{~cm}^{-1}$.
cis- and trans-2-Phenyl-2-thioxo-5-tert-butyl-1,3,2 λ^{5}-oxazaphosphorinane (7). In complete analogy to the preparation of 6 , a solution of dichlorophenylphosphine sulfide ($4.83 \mathrm{~g}, 23 \mathrm{mmol}$) in anhydrous ethyl acetate (40 mL) was allowed to react with a solution of 2 -(hydroxy-methyl)-3,3-dimethylbutylamine ($3.00 \mathrm{~g}, 23 \mathrm{mmol}$) and triethylamine ($4.63 \mathrm{~g}, 46 \mathrm{mmol}$) to give 5.24 g (85% crude yield) of a mixture of cisand trans-7. A $500-\mathrm{mg}$ sample of the mixture was chromatographed by MPLC on silica gel, eluting with EtOAc/pentane (1:10) to give 150 mg of pure trans $-7,200 \mathrm{mg}$ of pure cis-7, and 120 mg of pure mixture of diastereomers submitted for analysis. trans-7: mp 78-79 ${ }^{\circ} \mathrm{C} ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 80.39$. cis-7: mp 89-90 ${ }^{\circ} \mathrm{C} ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 73.08$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{20}$ NOPS: C, 57.97; H, 7.48; P, 11.49. Found: C, 58.07; $\mathrm{H}, 7.60 ; \mathrm{P}, 11.41$.

N-Methyl-2-(carbethoxy)-3,3-dimethylbutyramide. A mixture of 2-(carbethoxy)-3,3-dimethylbutyric acid ${ }^{3}(16.7 \mathrm{~g}, 88 \mathrm{mmol})$ and thionyl chloride ($11.6 \mathrm{~g}, 97 \mathrm{mmol}$) was heated under reflux for 1.5 h . The excess thionyl chloride was removed under reduced pressure at room temperature. Anhydrous diethyl ether (300 mL) was added to the remaining residue, and anhydrous methylamine was passed into the solution until no more precipitate formed. The precipitate was filtered off and washed with ether ($3 \times 50 \mathrm{~mL}$). The combined ether solutions were dried (MgSO_{4}) and the ether removed under reduced pressure to yield a crystalline residue, which was recrystallized from ethanol/pentane to give 9.0 g (51% yield) of pure N-methyl-2-(carbethoxy)-3,3-dimethylbutyramide as a colorless crystalline solid: mp $109-110{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (60 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.10\left(\mathrm{~s}, 9 \mathrm{H}, t\right.$-Bu), $1.33\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.86$ $(\mathrm{d}, 3 \mathrm{H}, \mathrm{CONHCH} 3), 3.19(\mathrm{~s}, 1 \mathrm{H}$, methine), $4.22(\mathrm{q}, 2 \mathrm{H}$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$).
\mathbf{N}-Methyl-2-(hydroxymethyl)-3,3-dimethylbutylamine. A solution of N -methyl-2-(carbethoxy)-3,3-dimethylbutyramide ($10.0 \mathrm{~g}, 49 \mathrm{mmol}$) in anhydrous ethyl ether (250 mL) was added over a $1-\mathrm{h}$ period to a stirred slurry of lithium aluminum hydride ($4.72 \mathrm{~g}, 125 \mathrm{mmol}$) in anhydrous ethyl ether (100 mL). After 2 days of reflux, the reaction mixture was cooled and then hydrolyzed by the addition of 6 mL of water followed by 45 mL of $15 \% \mathrm{NaOH}$ solution and another 15 mL of water. The resulting mixture was stirred for 1 h . The ether layer was separated, and the aqueous layer was extracted with ether ($3 \times 100 \mathrm{~mL}$). The combined ether layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and filtered, and the ether was removed by rotary evaporation. Distillation at reduced pressure gave $5.1 \mathrm{~g}(71 \%$ yield) of N-methyl-2-(hydroxymethyl)-3,3-dimethylbutylamine as a colorless oil: bp 101-102 ${ }^{\circ} \mathrm{C}\left(7.0\right.$ torr) ${ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $0.95(\mathrm{~s}, 9 \mathrm{H}, l-\mathrm{Bu}), 1.55(\mathrm{~m}, 1 \mathrm{H}$, methine $), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.10$ (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), $3.80(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}, \mathrm{NH}), 3.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right)$; IR (thin film) 3200 (br), 2960 (br), 2860, 2800, 1480, 1370, 1240, 1120, 1050 cm^{-1}. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{19} \mathrm{NO}: \mathrm{C}, 66.16 ; \mathrm{H}, 13.19 ; \mathrm{N}, 9.64$. Found: C, 65.93 ; H, 13.19; N, 9.71 .
cis-2-Phenyl-2-oxo-3-methyl-5-tert-butyl-1,3,2 λ^{5}-oxazaphosphorinane (9). By the procedure described for 6 , a solution of phenylphosphonic dichloride ($4.79 \mathrm{~g}, 27 \mathrm{mmol}$) in ethyl acetate (40 mL) was allowed to react with a solution of N-methyl-2-(hydroxymethyl)-3,3-dimethylbutylamine ($3.90 \mathrm{~g}, 27 \mathrm{mmol}$) and triethylamine ($5.42 \mathrm{~g}, 54 \mathrm{mmol}$) in ethyl acetate (35 mL) to give $7.1 \mathrm{~g}(100 \%$ crude yield) of product. A $500-\mathrm{mg}$ sample of the mixture was chromatographed by MPLC on silica gel eluting with EtOH/hexane (1:25) to give 213 mg of pure cis-9: mp

75-76 ${ }^{\circ} \mathrm{C}$; ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 17.54$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{P}$: C, 62.90; H, $8.30 ; \mathrm{N}, 5.24 ; \mathrm{P}, 11.59$. Found: $\mathrm{C}, 61.33 ; \mathrm{H}, 8.57$; N, 5.29; P, 11.09.
cis-and trans-2-Phenyl-2-thiox0-3-methyl-5-tert-butyl-1,3,2 ${ }^{5}$-oxazaphosphorinane (10). Similarly, a solution of dichlorophenylphosphine sulfide ($4.37 \mathrm{~g}, 21 \mathrm{mmol}$) in ethyl acetate (40 mL) was allowed to react with a solution of N-methyl-2-(hydroxymethyl)-3,3-dimethylbutylamine $(3.00 \mathrm{~g}, 21 \mathrm{mmol})$ and triethylamine ($4.19 \mathrm{~g}, 42 \mathrm{mmol}$) in ethyl acetate (35 mL) to give 6.23 g (100% crude yield) of a mixture of cis- and trans-10. A $1.50-\mathrm{g}$ sample of the mixture was chromatographed (gravity) on silica gel, eluting with benzene/pentane (1:1) to give 632 mg of pure trans-10, 612 mg of pure cis-10, and 49 mg of pure mixture of diastereomers. trans-10: mp $81-83^{\circ} \mathrm{C}$; ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 88.75$. cis-10: mp $84-86{ }^{\circ} \mathrm{C}$; ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 82.70$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{22}$ NOPS: C, 59.34; H, 7.83; P, 10.93. Found: C, 59.52; H, 7.87; P, 10.86.
cis- and trans-2,3-Diphenyl-2-oxo-5-tert-butyl-1,3,2 λ^{5}-oxazaphosphorinane (11). In a similar fashion, a solution of phenylphosphonic dichloride ($1.88 \mathrm{~g}, 9.7 \mathrm{mmol}$) in ethyl acetate $(25 \mathrm{~mL})$ reacted with a solution of N-phenyl-2-(hydroxymethyl)-3,3-dimethylbutylamine ${ }^{3}$ (2.00 $\mathrm{g}, 9.7 \mathrm{mmol}$) and triethylamine ($1.95 \mathrm{~g}, 19 \mathrm{mmol}$) in ethyl acetate (30 mL) to give 3.30 g (100% crude yield) of a mixture of cis- and trans-11. A $400-\mathrm{mg}$ sample of the mixture was chromatographed by MPLC on silica gel, eluting with EtOAc/hexane (2:3), to give 39 mg of pure cis-11, 150 mg of pure trans -11 , and 177 mg of a pure mixture of diastereomers for analysis. cis-11: mp 158-160 ${ }^{\circ} \mathrm{C}$; ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 13.33$. trans-11: mp 126-128 ${ }^{\circ} \mathrm{C}$; ${ }^{31} \mathrm{P}$ NMR (acetone- d_{6}) δ 15.12. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{P}: \mathrm{C}, 69.51 ; \mathrm{H}, 7.50 ; \mathrm{P}, 9.43$. Found: $\mathrm{C}, 69.29 ; \mathrm{H}, 7.34$; P, 9.40 .

Bis(dimethylamino)chlorophosphine was prepared by a modification of the procedure reported by Van Wazer and Maier. ${ }^{17}$ Phosphorus trichloride ($5.7 \mathrm{~mL}, 8.9 \mathrm{~g}, 65 \mathrm{mmol}$) and hexamethylphosphorus triamide $(27.8 \mathrm{~mL}, 21.2 \mathrm{~g}, 130 \mathrm{mmol})$ were mixed at $0^{\circ} \mathrm{C}$. After 15 min the reaction mixture was heated to $100^{\circ} \mathrm{C}$ for 30 min . The crude oil was distilled under high vacuum, collecting the product at $-78^{\circ} \mathrm{C}$, to give 29.0 g (96% yield) of bis(dimethylamino)chlorophosphine as a clear, colorless liquid, which fumes in air: ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 158.4$.

Bis(dimethylamino)mesitylphosphine (18). A solution of mesitylmagnesium bromide (100 mmol) in ether, prepared by reaction of magnesium turnings ($2.43 \mathrm{~g}, 0.10 \mathrm{~mol}$) with bromomesitylene ($15.3 \mathrm{~mL}, 19.9$ $\mathrm{g}, 100 \mathrm{mmol}$) in refluxing anhydrous ether (120 mL) over 5 days, was added slowly at $0^{\circ} \mathrm{C}$ to a solution of bis(dimethylamino)chlorophosphine $(15.5 \mathrm{~g}, 100 \mathrm{mmol})$ in ether (150 mL). The reaction mixture was allowed to warm slowly to room temperature and stirred for 48 h . The reaction mixture was filtered. Solvent removal in vacuo gave a yellow residual oil, which was used without further purification: ${ }^{1} \mathrm{H}$ NMR $(90 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 2.20\left(\mathrm{~s}, 3 \mathrm{H}, p-\mathrm{CH}_{3}\right), 2.45\left(\mathrm{~s}, 6 \mathrm{H}, o-\mathrm{CH}_{3}\right), 2.58\left(d, J_{\mathrm{PH}}=9.9\right.$ $\left.\mathrm{Hz}, 12 \mathrm{H}, N-\mathrm{CH}_{3}\right), 6.95\left(d, 2 \mathrm{H}\right.$, aromatic); ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 106.2$.

Dichloromesitylphosphine. Excess anhydrous HCl was bubbled through a solution of crude bis(dimethylamino) mesitylphosphine (ca. 100 mmol) in anhydrous pentane (200 mL) at room temperature. The reaction mixture was filtered, the pentane removed in vacuo, and the residue distilled from bulb to bulb (Kugelrohr) with an air-bath temperature of $150^{\circ} \mathrm{C}(0.5 \mathrm{Torr})$ to give 13.5 g of dichloromesitylphosphine $(61 \%$ yield from $\left(\mathrm{Me}_{2} \mathrm{~N}\right)_{2} \mathrm{PCl}$) as a colorless crystalline solid: ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 167.51$.

Mesitylphosphonic Dichloride. A solution of dichloromesityl phosphine $(9.73 \mathrm{~g}, 44.0 \mathrm{mmol})$ in dichloromethane $(100 \mathrm{~mL})$ was oxidizied at -20 ${ }^{\circ} \mathrm{C}$ by dropwise addition of a saturated solution of $\mathrm{N}_{2} \mathrm{O}_{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction mixture was warmed to room temperature. The solvent was removed in vacuo to give 16.54 g of a crude yellow liquid. A $2.88-\mathrm{g}$ sample of the crude product was Kugelrohr distilled at $120^{\circ} \mathrm{C}(0.2$ Torr) to give 1.21 g (67% yield) of mesitylphosphonic dichloride as a colorless crystalline solid: ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 32.77$.
cis - and trans-2-Mesityl-2-oxo-5-tert-butyl-1,3,2 λ^{5}-oxazaphosphorinane (8). A solution of mesitylphosphonic dichloride ($2.64 \mathrm{~g}, 11.1 \mathrm{mmol}$) in anhydrous ethyl acetate (30 mL) was added slowly at $0^{\circ} \mathrm{C}$ to a stirred solution of 2-(hydroxymethyl)-3,3-dimethylbutylamine ${ }^{3}$ ($1.46 \mathrm{~g}, 11.1$ mmol) and anhydrous triethylamine ($3.10 \mathrm{~mL}, 2.25 \mathrm{~g}, 22.2 \mathrm{mmol}$) in anhydrous ethyl acetate (30 mL). The reaction mixture was allowed to warm to room temperature and then stirred for 5 days. The triethylamine hydrochloride was filtered off. Solvent was removed from the filtrate in vacuo to give 3.21 g of a pale yellow solid (98% crude yield). A $900-\mathrm{mg}$ sample was chromatographed by MPLC on silica gel, eluting with EtOH/EtOAc (1:9), to give 140 mg of pure trans-8, which was recrystallized from ethyl acetate/pentane: mp $151-153^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.90(\mathrm{~s}, 9 \mathrm{H}, \boldsymbol{t}-\mathrm{Bu}), 1.35(\mathrm{~m}, 1 \mathrm{H}$, methine $), 2.31$ $\left(\mathrm{s}, 3 \mathrm{H}, p-\mathrm{CH}_{3}\right), 2.70\left(\mathrm{~s}, 6 \mathrm{H}, o-\mathrm{CH}_{3}\right), 3.1-3.5\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.1-4.7$ (m, $3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}, \mathrm{NH}$), 7.08 (d, $J=4.8 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic); ${ }^{31} \mathrm{P}$ NMR
(17) Van Wazer, J. R.; Maier, L. J. Am. Chem. Soc. 1964, 86, 811.
($\mathrm{C}_{6} \mathrm{D}_{6}$) δ 20.68; IR (KBr) 3240 (N-H), 2955, 2890, 1610, 1470, 1415, 1397, 1372, 1235, 1208, 1184, 1123, 1100, 1022, 996, 985, 866, 854, 804, $675,644, \mathrm{~cm}^{-1}$; MS $m / e 295$ ($\mathrm{M}^{+}, 29 \%$), 280 (19\%), 238 (59\%), 210 (33%), 183 (22%), 182 (22%), 69 (23%), 57 (31%), 56 (100%), 41 (40%), $30(89 \%)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{P}: \mathrm{C}, 65.06 ; \mathrm{H}, 8.88 ; \mathrm{P}, 10.49$. Found: C, $65.11 ; \mathrm{H}, 8.90 ; \mathrm{P}, 10.64$. Also isolated was 100 mg of pure cis-8, which was recrystallized from ethyl acetate/pentane: mp 167-168 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.86(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 2.06(\mathrm{~m}, 1 \mathrm{H}$, methine), $2.32\left(\mathrm{~s}, 3 \mathrm{H}, p-\mathrm{CH}_{3}\right), 2.66\left(\mathrm{~s}, 6 \mathrm{H}, o-\mathrm{CH}_{3}\right), 2.8-3.6(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 3.7-4.8\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}, \mathrm{NH}\right), 7.10(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic) ; ${ }^{31} \mathrm{P}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 20.88$; IR (KBr) $3220(\mathrm{~N}-\mathrm{H}), 2960,1608$, 1480-1440, 1366, 1322, 1242 ($\mathrm{P}=-\mathrm{O}$), 1137, 1090, 1037, 1005, 850, 800, $781,629 \mathrm{~cm}^{-1}$; MS m/e 295 ($\mathrm{M}^{+}, 39 \%$), 238 (75%), 210 (39%), 183 (20%), 182 (21%) 56 (100%), 41 (39%), $30(82 \%)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{P}: \mathrm{C}, 65.06 ; \mathrm{H}, 8.88 ; \mathrm{P}, 10.49$. Found: C, $65.14 ; \mathrm{H}, 8.94$; $\mathrm{P}, 10.63$. Also eluted was 380 mg of pure cis/trans mixture ($57: 43$).

2-Mesityl-3-phenyl-5-tert-butyl-1,3,2 λ^{5}-oxazaphosphorinane. A solution of bis(dimethylamino) mesitylphosphine, $18(6.50 \mathrm{~g}, 27.3 \mathrm{mmol})$, and N-phenyl-2-(hydroxymethyl)-3,3-dimethylbutylamine ${ }^{3}$ ($5.65 \mathrm{~g}, 27.3$ mmol) in anhydrous toluene (100 mL) was refluxed under an argon atmosphere for 40 h . The toluene was removed from the reaction mixture in vacuo to give 10.89 g of a crude mixture of diastereomers, which was used without further purification: ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 125.0,117.2$ (isomer ratio by integration, 1:2.4).
cis- and trans-2-Mesityl-2-ox0-3-phenyl-5-tert-butyl-1,3,2 λ^{5}-oxazaphosphorinane (12). A sample of crude 2 -mesityl-3-phenyl-5-tert-butyl $1,3,2 \lambda^{5}$-oxazaphosphorinane ($3.00 \mathrm{~g}, 8.44 \mathrm{mmol}$) in anhydrous toluene (20 mL) was oxidized at $0^{\circ} \mathrm{C}$ by slow addition of tert-butyl hydroperoxide ($70 \%, 1.2 \mathrm{~mL}, 8.44 \mathrm{mmol}$). The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min , allowed to warm to room temperature, and stirred for 1 h . The volatile materials were removed in vacuo, to leave 3.49 g of a reddish brown oil: ${ }^{31} \mathrm{P}\left(\mathrm{CDCl}_{3}\right) \delta 16.8$ (cis-12); 21.4 (Irans-12) (ratio 2.4:1). A $1.32-\mathrm{g}$ sample of the crude product was chromatographed by MPLC on silica gel. Elution with EtOAc/hexane (1:1) gave, after recrystallization from $\mathrm{Et}_{2} \mathrm{O} /$ pentane, 320 mg of pure cis-12 as a colorless crystalline solid: mp $112-113{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 0.58$ (s, $9 \mathrm{H}, t-\mathrm{Bu}), 1.86\left(\mathrm{~s}, 3 \mathrm{H}, p-\mathrm{CH}_{3}\right), 2.64(\mathrm{~m}, 1 \mathrm{H}$, methine), $2.72(\mathrm{~s}, 6 \mathrm{H}$, $\left.0-\mathrm{CH}_{3}\right), 3.19-4.59\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{O}\right), 6.40-7.32(\mathrm{~m}, 7 \mathrm{H}$, aromatic); ${ }^{31}$ P NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 14.78$; IR (KBr) 3042, 3028, 2965, 2912, 2890, 2873, 1600, 1498, 1462, 1296, 1274, 1224 ($\mathrm{P}=\mathrm{O}$), 1132, 1082, 1047, 1032, 1013, 976, 862, 854, 807, 783, 758, 700, $649 \mathrm{~cm}^{-1}$; MS m/e $372(\mathrm{M}+1,25 \%), 371\left(\mathrm{M}^{+}, 100 \%\right), 314(48 \%), 286(9 \%), 259(10 \%)$, 258 (11\%), 132 (29\%), 106 (38%), 105 (38%), 104 (19%), 93 (11%), 77 (18%), $69(11 \%), 57(11 \%), 56(26 \%), 41$ (21%). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{NO}_{2} \mathrm{P}: \mathrm{C}, 71.13 ; \mathrm{H}, 8.14 ; \mathrm{P}, 8.34$. Found: $\mathrm{C}, 71.19 ; \mathrm{H}, 8.15 ; \mathrm{P}$, 8.57. Also obtained was 700 mg of pure trans-12, after recrystallization from $\mathrm{Et}_{2} \mathrm{O}$ /pentane, as a colorless crystalline solid: mp $133-134{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($90 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 0.59(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}), 1.87\left(\mathrm{~s}, 3 \mathrm{H}, p-\mathrm{CH}_{3}\right), 2.29$ ($\mathrm{m}, 1 \mathrm{H}$, methine), $2.82\left(\mathrm{~s}, 6 \mathrm{H}, o-\mathrm{CH}_{3}\right), 3.23-4.79\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}-\right.$, $\mathrm{CH}_{2} \mathrm{O}$) , 6.56-7.44 (m, 7 H , aromatic); ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 19.69$; IR (KBr) 3060, 2974, 2952, 2912, 2890, 1606, 1594, 1581, 1499, 1462, $1408,1370,1366,1250(\mathrm{P}=\mathrm{O}), 1224(\mathrm{P}=\mathrm{O}), 1188,1132,1086,1058$, $1029,1015,948,856,836,813,788,764,717,702,643 \mathrm{~cm}^{-1}$; MS m / e 372 ($\mathrm{M}+1,16 \%$), $371\left(\mathrm{M}^{+}, 61 \%\right), 356$ (9%), 314 (38%), 286 (11%), 258 (11%), 132 (55%), 106 (75%), 105 (71%), 104 (39%), 77 (66%), 69 (36%), 57 (77%), 56 (56%), 55 (29%), 41 (100%). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{NO}_{2} \mathrm{P}: \mathrm{C}, 71.13 ; \mathrm{H}, 8.14 ; \mathrm{P}, 8.34$. Found: C, $71.21 ; \mathrm{H}, 8.14 ; \mathrm{P}$, 8.59.

X-ray Single-Crystal Structure Study of cis-2-Mesityl-2-oxo-5-tert-butyl-1,3,2 λ^{5}-oxazaphosphorinane (cis-8). Clear colorless crystals of cis-8 were obtained by vapor diffusion of a solution of the compound in ethyl acetate with pentane. A well-formed crystal (plate, cut to cube, $0.3 \times 0.3 \times 0.3 \mathrm{~mm}$) was mounted on a Syntex $P \overline{1}$ autodiffractometer equipped with a scintillation counter and graphite-monochromated Mo $K \alpha$ radiation ($\lambda=0.71073 \AA$). The automatic centering, indexing, and least-squares routines ${ }^{18}$ were carried out on 15 reflections in the 2θ range $8.8^{\circ}-20.1^{\circ}$ to obtain the cell dimensions, which are given in Table IV. The data were reduced to $F_{0}{ }^{2}$ and $\sigma\left(F_{0}{ }^{2}\right)$. Lorentz and polarization corrections ${ }^{19}$ were applied to all reflections. The $\theta-2 \theta$ scan method over the range $4.0^{\circ} \leq 2 \theta \leq 50.0^{\circ}$ was used to collect the data of which those with $I \geq 3 \sigma(I)$ were considered observed and were used in the calculations.

The programs used in the course of the structure determination included multan (locally modified, direct methods program by G. Ger-
(18) Programs used for centering, autoindexing, least-squares refinement of the cell parameters, and data collection were written by Syntex Analytical Instruments, Cupertino, CA.
(19) Kerr, K. A.; Ashmore, J. P. Acta Crystallogr., Sect. A.: Cryst. Phys., Diffr., Theor. Gen. Crysiallogr. 1974, A30, 176.

Table VIII. Torsional Angles (deg) for cis-8

$\mathrm{O} 2-\mathrm{P}-\mathrm{O} 1-\mathrm{C} 6$	163.48	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 7-\mathrm{C} 10$	179.41
$\mathrm{~N} 3-\mathrm{P}-\mathrm{O} 1-\mathrm{C} 6$	43.23	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 7-\mathrm{C} 9$	-173.50
$\mathrm{C} 11-\mathrm{P}-\mathrm{O} 1-\mathrm{C} 6$	-76.83	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 7-\mathrm{C} 8$	65.39
$\mathrm{O} 2-\mathrm{P}-\mathrm{N} 3-\mathrm{C} 4$	-154.54	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 7-\mathrm{C} 10$	-54.89
$\mathrm{O} 1-\mathrm{P}-\mathrm{N} 3-\mathrm{C} 4$	-35.07	$\mathrm{P}-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	177.23
$\mathrm{C} 11-\mathrm{P}-\mathrm{N} 3-\mathrm{C} 4$	77.29	$\mathrm{P}-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 18$	-1.27
$\mathrm{O} 2-\mathrm{P}-\mathrm{C} 11-\mathrm{C} 12$	-108.17	$\mathrm{C} 16-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	2.13
$\mathrm{O} 2-\mathrm{P}-\mathrm{C} 11-\mathrm{C} 16$	67.01	$\mathrm{C} 16-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 18$	-176.37
O1-P-C11-C12	131.70	$\mathrm{P}-\mathrm{C} 11-\mathrm{C} 16-\mathrm{C} 15$	-176.79
O1-P-C11-C16	-53.13	$\mathrm{P}-\mathrm{C} 11-\mathrm{C} 16-\mathrm{C} 17$	2.13
N3-P-C11-C12	20.89	$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 16-\mathrm{C} 15$	-1.32
N3-P-C11-C16	-163.93	$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 16-\mathrm{C} 17$	177.61
P-O1-C6-C5	-62.55	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	-1.22
P-N3-C4-C5	42.52	$\mathrm{C} 18-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	177.39
O1-C6-C5-C4	62.86	$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	-0.55
O1-C6-C5-C7	-168.83	$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 19$	179.79
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4-\mathrm{N} 3$	-55.49	$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15-\mathrm{Cl} 16$	1.41
$\mathrm{C} 7-\mathrm{C} 5-\mathrm{C} 4-\mathrm{N} 3$	-179.21	$\mathrm{C} 19-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	-178.93
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 7-\mathrm{C} 9$	60.80	$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 11$	-0.47
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 7-\mathrm{C} 8$	-60.31	$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17$	-179.46

main, P. Main, and M. M. Woolfson), the Ibers nUCLS (structure factor calculations and least-squares refinement, itself a modification of ORFLS, by R. Busing, K. O. Martin, and H. A. Levy), Fordap (Fourier summation program, by A. Zalkin), ORFFE (locally modified, calculations of distances, angles, and torsion angles with estimated standard deviations, by Busing, Martin, and Levy), and ORTEP (thermal ellipsoid plotting program, by C. K. Johnson). All calculations were performed on the Control Data Corp. Cyber-175 computer at the University of Arizona Computing Center.

Neutral atomic scattering factors of Cromer and Waber ${ }^{20 \mathrm{a}}$ were used for all atoms except hydrogen, for which the values of Stuart, Davidson, and Simpson ${ }^{21}$ were chosen. The effect of the real and imaginary components of anomalous dispersion for the phosphorus atom were included in the structure factor calculations by using the tabulated values of Cromer. ${ }^{206}$

The structure was refined by full-matrix, least-squares techniques, minimizing the function $w\left(\left|F_{0}\right|-\left|F_{\mathrm{c}}\right|\right){ }^{21}$ The weights were taken as w $=4 F_{0} 2 /\left[\sigma^{2}\left(F_{0}^{2}\right)+\left(p F_{0}^{2}\right)^{2}\right]$ where p, the factor to prevent overweighting of strong reflections, was set equal to $0.03 .^{22}$ The discrepancy indices, R and R_{w}, are defined as $R=\sum| | F_{0}\left|-\left|F_{c}\right| / \sum\right| F_{0} \mid$ and $R_{w}=\left[\sum w\left(\left|F_{0}\right|\right.\right.$ $\left.\left.-\left|F_{\mathrm{c}}\right|\right)^{2} / \sum w F_{0}^{2}\right]^{1 / 2}$. The "goodness of fit" is defined as GOF $=\left[\sum w\left(\left|F_{0}\right|\right.\right.$ $\left.-\left.\left|F_{\mathrm{c}}\right|\right|^{2} /(n-m)\right]^{1.2}$ where n is the number of reflections used in the
(20) (a) Cromer, D. T.; Waber, J. T. In International Tables for X-ray Crystallography; Ibers, J. A., Hamilton, W. C., Ed.; Kynoch: Birmingham, England, 1974; Vol. IV, Table 2.2A, p 149. (b) Cromer, D. T. Ibid. Table 2.3.1, p 72.
(21) Stewart, R. F.; Davidson, E. R.; Simpson, W. T. J. Chem. Phys. 1965, 42, 3175.
(22) Doedens, R. J.; Ibers, J. A. Inorg. Chem. 1967, 6, 204.
refinement and m is the number of variable parameters.
The positions of the phosphorus, nitrogen, oxygens, and three carbon atoms were obtained from an "E-map" based on the solution with the highest combined figure of merit (2.15) generated by the direct methods program multan. A Patterson calculation confirmed the position of the phosphorus obtained from multan. Six cycles of least squares resulted in $R=0.416$ and $R_{w}=0.483$. A total of 10 additional carbon atoms was located in the first difference electron density map. Least-squares refinement resulted in $R=0.280$ and $R_{\mathrm{w}}=0.358$. The second difference electron density map revealed the remaining three carbon atoms. Isotropic refinement to convergence resulted in $R=0.121$ and $R_{w}=0.140$. Anisotropic refinement of all non-hydrogen atoms to convergence led to $R=0.092, R_{w}=0.114$, and GOF $=3.2$. A difference electron density map clearly revealed the positions of all 26 hydrogen atoms, which with the exception of the hydrogen atom bound to the nitrogen, were included as fixed contributors in idealized positions $(\mathrm{C}-\mathrm{H}=0.95 \AA)^{23}$ assuming trigonal geometry about the phenyl carbon atoms and tetrahedral geometry about the methyl and methylene carbon atoms. The hydrogen atom bound to the nitrogen was included as a fixed contributor in the position it was found ($\mathrm{N}-\mathrm{H}=1.139$ (3) \AA). Each hydrogen atom was assigned an isotropic thermal parameter $1.0 \AA^{2}$ greater than the atom to which it was bound. Full-matrix least-squares refinement of the 181 variables converged with $R=0.053, R_{w}=0.060$, and GOF $=2.05$. The overdetermination ratio (n / m) was 8.5 . The final difference electron density map revealed no peaks greater than 0.27 e \AA^{-3} (near TC3).

The final non-hydrogen atomic parameters with their estimated standard deviations are given in Trable V, while Tables VI-VIII list bond distances, bond angles, and torsion angles, respectively.

Acknowledgment. This work was supported by Grant CA 11045 from the National Cancer Institute of the Public Health Service.

Registry No. cis-6, 116005-11-9; trans-6, 116005-18-6; cis-7, 116005-12-0; trans-7, 116005-19-7; cis-8, 116005-13-1; trans-8, 116005-20-0; cis-9, 116005-14-2; cis-10, 116005-15-3; trans-10, 116005-21-1; cis-11, 116005-16-4; trans-11, 116005-22-2; cis-12, 116005-17-5; trans-12, 116025-33-3; $17(\mathrm{R}=\mathrm{H})$, 15521-17-2; $17(\mathrm{R}=$ $\mathrm{Me}), 116005-24-4 ; 17(\mathrm{R}=\mathrm{Ph}), 83096-39-3 ; 18,116005-25-5 ; \mathrm{MeP}$ (O) $\mathrm{Cl}_{2}, 114070-55-2$; dichlorophenylphosphine sulfide, $3497-00-5 ; \mathrm{N}$ -methyl-2-(carbethoxy)-3,3-dimethylbutyramide, 116005-23-3; 2-(carb-ethoxy)-3,3-dimethylbutyric acid, 83096-36-0; bis(dimethylamino)chlorophosphine, 3348-44-5; hexamethylphosphorous triamide, 1608-26-0; mesitylmagnesium bromide, 2633-66-1; bromomesitylene, 576-83-0; dichloromesitylphosphine, 6781-96-0; 2-mesityl-3-phenyl-5-Iert-butyl1,3,2 λ^{5}-oxazaphosphorinane, 116005-26-6.

Supplementary Material Available: Tables of the fixed hydrogen atomic parameters and the thermal parameters for cis-8 (2 pages); listing of observed and calculated structure factors (7 pages). Ordering information is given on any current masthead page.
(23) Churchill, M. R. Inorg. Chem. 1973, 12, 1213.

[^0]: ${ }^{+}$University of Utah.
 $\$$ University of Arizona

[^1]: (1) Two recent reviews by chemists have emphasized both the chemical and pharmacological aspects of cyclophosphamide, its analogues, and related compounds: Zon, G. Prog. Med. Chem. 1982, 19, 205. Stec, W. Organophosphorus Chem. 1982, 13, 145. See also: Hill, D. L. A Review of Cyclophosphamide; Charles C. Spring: Springfield, IL, 1975. Calvin, M. In Clinical Pharmacology of Anil-Neoplaslic Drugs; Pinedo, H. M., Ed.; Elsevier: Amsterdam, The Netherlands, 1978; pp 245-261. Friedman, O. M.; Myles, A.; Calvin, M. Adv. Cancer Chemother. 1979, 1, 143.
 (2) Boyd, V. L.; Zon, G.; Himes, V. L.; Stalick, J. K.; Mighell, A. D.; Secor, H. V. J. Med. Chem. 1980, 23, 372.
 (3) Bajwa, G. S.; Chandrasekaran, S.; Hargis, J. H.; Sopchik, A. E.; Blatter, D.; Bentrude, W. G. J. Am. Chem. Soc. 1982, 104, 6385.
 (4) (a) Setzer, W. N.; Sopchik, A. E.; Bentrude, W. G. J. Am. Chem. Soc. 1985, 107, 2083. (b) Holmes, R. R.; Day, R. O.; Setzer, W. N.; Sopchik, A. E.; Bentrude, W. G. Ibid. 1984, 106, 2353.

[^2]: (5) Day, R. O.; Holmes, R. R., details to be published elsewhere.

[^3]: (6) These include, in addition to cis-8 and trans-12, the following: cis-2-(dimethylamino)-2-oxo-5-tert-butyl-1,3,2 λ^{5}-dioxazaphosphorinane ${ }^{8}$ cis-2-(dimethylamino)-2-thioxo-5-tert-butyl-1,3,2 λ^{5}-oxazaphosphorinane; ${ }^{9}$ cis-2-(dimethylamino)-2-oxo-3-phenyl-5-tert-butyl-1,3,2 λ^{5}-oxazaphosphorinane; ${ }^{3}$ cis-2-(dimethylamino)-2-oxo-3,5-diphenyl-1,3,2 λ^{5}-oxazaphosphorinane. ${ }^{10}$ Furthermore, the assignments to the diastereomers of 2-methoxy-2-oxo-5-tert-butyl- $1,3,2 \lambda^{5}$-oxazaphosphorinanes and their 3 -phenyl counterparts, ${ }^{11}$ though not done by X-ray crystallography, are unquestioned because of the expected effect of the axial-seeking methoxy on conformation. These compounds as well as their two 2-thio counterparts obey both the ${ }^{31} \mathrm{P}$ and ${ }^{1} \mathrm{H}$ chemical shift correlation rules. ${ }^{11}$ The ${ }^{31} P$ shift correlation also was found in ref 2 and in: Kinas, R.; Pankiewicz, K.; Stec, W. J.; Farmer, P. B.; Foster, A. B.; Jarman, M. J. Org. Chem. 1977, 42, 1650.

[^4]: (7) (a) Bentrude, W. G.; Setzer, W. N. In ${ }^{31} P$ NMR Spectroscopy in Stereochemical Analysis; Verkade, J. G., Quin, L. D., Eds.; VCH: Deerfield Beach, FL, 1987; Chapter 11. (b) Maryanoff, B. E.; Hutchins, R. O.; Maryanoff, C. A. Top. Stereochem. 1979, 11, 187-326. (c) Bentrude, W. G.; Hargis, J. H. J. Chem. Soc., Chem. Commun. 1969, 1113. (d) Bentrude, W. G.; Tan, H.-W. J. Am. Chem. Soc. 1973, 95, 4666.
 (8) Newton, M. G., University of Georgia, unpublished X-ray data.
 (9) Newton, M. G.; Pantaleo, N.; Bentrude, W. G.; Chandrasekaran, S. Telrahedron Letl. 1982, 23, 1527.
 (10) Bentrude, W. G.; Day, R. O.; Holmes, J. M.; Quin, G. S.; Setzer, W N.; Sopchik, A. E.; Holmes, R. R. J. Am. Chem. Soc. 1984, 106, 106.

[^5]: (11) Bentrude, W. G.; Setzer, W. N.; Sopchik, A. E.; Bajwa, G. S.; Burright, D. D.; Hutchinson, J. P. J. Am. Chem. Soc. 1986, 108, 6669.
 (12) This is the classic combination of J_{HP} values encountered for twist form 15: $J_{\mathrm{AP}}>J_{\mathrm{BP}}, J_{\mathrm{AX}}>J_{\mathrm{BX}}{ }^{3,10.11}$

[^6]: (13) Similar coupling constants were found for cis- 3^{3} and cis-2-(di-methylamino)-2-oxo-3,5-diphenyl-1,3,2 λ^{5}-oxazaphosphorinane, ${ }^{10}$ both of which are in the twist form (15) in the crystal (X-ray structure studies).

[^7]: (14) This can be seen in examining the interplane angles or looking at the $\mathrm{C} 4-\mathrm{N} 3-\mathrm{P}-\mathrm{O} 1$ and $\mathrm{C} 6-\mathrm{O} 1-\mathrm{P}-\mathrm{N} 3$ dihedral angles of the compounds with axial substituents (ref 9, and unpublished data, and ref 4 b and 11). By comparison for cyclophosphamide with $\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)_{2}$ equatorial, see: Cutbush, S. D.; Neidle, S.; Taylor, G. N.; Gaston, J. L. J. Chem. Soc., Perkin Trans. 2 1981, 980. Adamiak, D. A.; Saenger, W.; Kinas, R.; Stec, W. J. Z. Naturforsch., C: Biosci. 1977, 32C, 672. Karle, I. L.; Karle, J. M.; Egan, W.; Zon, G.; Brandt, J. A. J. Am. Chem. Soc. 1977, 99, 4803.
 (15) Bajwa, G. S.; Bentrude, W. G.; Pantaleo, N. S.; Newton, M. G.; Hargis, J. H. J. Am. Chem. Soc. 1979, 101, 1602.
 (16) Kirby, A. J. The Anomeric Effect and Related Stereoelectronic Effects at Oxygen; Springer-Verlag: West Berlin, Heidelberg, New York, 1983.

